-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueThe Hole Truth: Via Integrity in an HDI World
From the drilled hole to registration across multiple sequential lamination cycles, to the quality of your copper plating, via reliability in an HDI world is becoming an ever-greater challenge. This month we look at “The Hole Truth,” from creating the “perfect” via to how you can assure via quality and reliability, the first time, every time.
In Pursuit of Perfection: Defect Reduction
For bare PCB board fabrication, defect reduction is a critical aspect of a company's bottom line profitability. In this issue, we examine how imaging, etching, and plating processes can provide information and insight into reducing defects and increasing yields.
Voices of the Industry
We take the pulse of the PCB industry by sharing insights from leading fabricators and suppliers in this month's issue. We've gathered their thoughts on the new U.S. administration, spending, the war in Ukraine, and their most pressing needs. It’s an eye-opening and enlightening look behind the curtain.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Nanocarbon Materials Are Challenging Silicon – From Transparent Electronics to Bendable 3D Displays
September 7, 2017 | Aalto UniversityEstimated reading time: 3 minutes

The superior characteristics of nanocarbon make it an extremely promising material for numerous current and future applications.
"Light and flexible nanocarbon materials conduct electricity better than copper and have greater mechanical strength than steel. They are also good thermal conductors and have great potential for use in reinforced composites, nanoelectronics, sensors and nanomechanical devices," says professor Esko I. Kauppinen, the director of Aalto University’s NanoMaterials research group.
Recently, significant advances have been made in the development of nanocarbon materials and their applications. The International Symposium on Nanocarbon Materials gathered the world’s cutting-edge nanocarbon material researchers to Aalto University.
Flexible and transparent electronics
One of the breakthrough applications of carbon nanotubes (CNT) is foreseen in transistor technology. Carbon nanotubes have already been shown to outperform silicon as the semiconducting material for transistors.
"The structure of CNT makes it more chemically stable than silicon. Compared to silicon CMOS technology, carbon nanotube devices are about 5-10 times faster, over 10 times more efficient in power consumption and much smaller in size," says professor Lian-Mao Peng from Peking University.
There are still several technical problems to solve before CNT based chips become commercial products; the main concerns are the material’s thermal and long-term stability. Also, the silicon industry is very mature and it will take major efforts to replace silicon as semiconducting material in electronics.
"I would say in 3-5 years we will see CNTs in some low-end applications that are not dominated by silicon, like flexible and transparent electronics. Maybe in 10-15 years CNT will get to mainstream semiconductor industry with high performance and low power consumption," Peng says.
Carbon nanotube films are also a potential material for the charge selection/conduction layer of perovskite solar cells. Perovskite solar cells challenge the traditional silicon cells with a cheaper, simpler and more energy-efficient manufacturing process.
"The best reported perovskite solar cells have the power conversion efficiency of 22 percent which is compatible to silicon solar cells. And, they can be much cheaper than silicon cells as organic solar cells. Also, flexible and transparent perovskite solar cells could be integrated in windows and other building surfaces. I expect they could become commercial in 3-5 years," says professor Shigeo Maruyama from the University of Tokyo.
Carbon nanostructure such as graphene gets exciting new applications through nanoscale technologies. Photo: Alexander Savin.
Shaping surfaces with curved and 3D formed displays
Besides carbon nanotubes, nanocarbons are found in various structures like spherical fullerens and single atomic layer graphene. In 2006, a new carbon composite nanomaterial was discovered by Aalto University NanoMaterials Group headed by professor Kauppinen. The material was named and patented as NanoBud.
"NanoBuds are formed by binding spheroidal carbon molecules, fullerenes, to the outer sidewalls of single-walled carbon nanotubes. Printed on a thin film of plastic, NanoBuds can be used in touch screens of mobile phones, cameras and wearable devices," Kauppinen says.
The discovery of NanoBud led to the establishment of Canatu Oy to develop and exploit commercial innovations. The Aalto University spin-off company manufactures 3D formable, flexible and transparent carbon NanoBud films and touch sensors for consumer electronics and automotive industry.
The NanoMaterials Group is one of the world's leading gas-phase synthesis laboratories for NanoBuds, nanotubes and nanomaterials. In Aalto University, high-level nanocarbon material research is conducted also in several other research teams in the School of Science, School of Chemical Engineering and School of Electrical Engineering.
"Besides our strong international networks, nanocarbon material research collaboration within Aalto University is most fruitful. By learning from each other we can achieve much better results compared to what we could accomplish ourselves," Kauppinen says.
The future of nanocarbon materials shines bright.
Suggested Items
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
07/11/2025 | Andy Shaughnessy, Design007 MagazineThis week, we have quite a variety of news items and articles for you. News continues to stream out of Washington, D.C., with tariffs rearing their controversial head again. Because these tariffs are targeted at overseas copper manufacturers, this news has a direct effect on our industry.I-Connect007 Editor’s Choice: Five Must-Reads for the Week
Digital Twin Concept in Copper Electroplating Process Performance
07/11/2025 | Aga Franczak, Robrecht Belis, Elsyca N.V.PCB manufacturing involves transforming a design into a physical board while meeting specific requirements. Understanding these design specifications is crucial, as they directly impact the PCB's fabrication process, performance, and yield rate. One key design specification is copper thieving—the addition of “dummy” pads across the surface that are plated along with the features designed on the outer layers. The purpose of the process is to provide a uniform distribution of copper across the outer layers to make the plating current density and plating in the holes more uniform.
Trump Copper Tariffs Spark Concern
07/10/2025 | I-Connect007 Editorial TeamPresident Donald Trump stated on July 8 that he plans to impose a 50% tariff on copper imports, sparking concern in a global industry whose output is critical to electric vehicles, military hardware, semiconductors, and a wide range of consumer goods. According to Yahoo Finance, copper futures climbed over 2% following tariff confirmation.
Happy’s Tech Talk #40: Factors in PTH Reliability—Hole Voids
07/09/2025 | Happy Holden -- Column: Happy’s Tech TalkWhen we consider via reliability, the major contributing factors are typically processing deviations. These can be subtle and not always visible. One particularly insightful column was by Mike Carano, “Causes of Plating Voids, Pre-electroless Copper,” where he outlined some of the possible causes of hole defects for both plated through-hole (PTH) and blind vias.
Trouble in Your Tank: Can You Drill the Perfect Hole?
07/07/2025 | Michael Carano -- Column: Trouble in Your TankIn the movie “Friday Night Lights,” the head football coach (played by Billy Bob Thornton) addresses his high school football team on a hot day in August in West Texas. He asks his players one question: “Can you be perfect?” That is an interesting question, in football and the printed circuit board fabrication world, where being perfect is somewhat elusive. When it comes to mechanical drilling and via formation, can you drill the perfect hole time after time?