Innovative Electronics Feels Like a Second Skin
September 15, 2017 | RIKENEstimated reading time: 2 minutes

Gold meshes developed by a RIKEN-led team can be attached to the skin for several days without triggering dermatitis. These devices promise to boost both patient comfort as well as the accuracy of clinical diagnostics.
Replacing the clunky cables associated with conventional electronic medical devices with wearable, wireless-enabled patches is a long-standing goal in medical diagnostics. To realize this, on-skin electronics capable of conforming to the body’s curved surfaces under a range of motions while remaining conductive need to be developed. Most demonstrations of this technology have used soft, stretchy silicone or organic polymers as substrates, but these kinds of films have tightly knit chemical structures that can trap humidity and microorganisms beneath them.
Takao Someya from the RIKEN Center for Emergent Matter Science is well aware of the challenges of integrating electronics with human bodies. In 2013, he and his colleagues developed an ultra-lightweight, nearly unbreakable wearable plastic that could be imprinted with organic transistors. “However, this sensor blocked airflow around the skin and caused irritation during long-term use due to its lack of breathability,” Someya recalls.
To solve this problem, Someya and co-workers decided to eliminate the backing substrate. They spun a polymer made from biocompatible polyvinyl alcohol into nanometer-thin, spaghetti-like strands and overlaid them in a mesh pattern. The team then deposited a thin gold coating onto the nanomesh plastic.
The device can be applied to the skin by simply spraying with water. This dissolves away the polymer, leaving behind a metal pattern that coats complex surfaces, such as fingerprint ridges, with ease.
The researchers anticipated that the porous, gas-permeable nature of the nanomeshes would lead to increased airflow and breathability, and clinical studies confirmed this to be the case. After a one-week study of volunteers wearing flexible conductive patches on their forearms, a dermatologist found significantly less skin inflammation with the laminated metal than conventional polymers, and participants reported forgetting the sensors were even attached.
Mechanical and electrical tests revealed the nanomeshes were durable enough for use as wireless touch sensors, even after hundreds of bending cycles. Their setup, which places the mesh conductor onto the fingertips (Fig. 1) and runs conductive patterns back to a wrist-held wireless module, uses changes in electrical resistance to spot when the skin touches an object. The researchers applied the same principle to produce temperature and pressure sensors and to fabricate electrodes for electromyography diagnostics.
“This sensor makes it possible to measure biological information without stress or discomfort, which may make it useful in fields from sports to medical care,” says Someya.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Armstrong Asia Signs MOU with Checkmate Capital Group to Explore Strategic Collaboration
09/15/2025 | GlobeNewswireArmstrong Asia, a leading Singapore-based manufacturer of flexible material solutions with 16 factories across 7 countries in Asia, has signed a Memorandum of Understanding (MOU) with Checkmate Capital Group, LLC (“Checkmate Capital”), a U.S.-based investment and advisory firm active in the Asia-Pacific and North American regions, focused on cross-border transactions in the life sciences, medical technology, and other industries.
Nordson MEDICAL Divests Contract Manufacturing, Refocuses on Proprietary Components
09/03/2025 | BUSINESS WIRENordson Corporation has completed the divestiture of select product lines within its medical contract manufacturing business to Quasar Medical.
Medical Device Contract Manufacturing Market Worth $140.84 Billion by 2030 with 10.9% CAGR
08/25/2025 | PRNewswireThe global Medical Device Contract Manufacturing Market, valued at US$78.58 billion in 2024, stood at US$83.77 billion in 2025 and is projected to advance at a resilient CAGR of 10.9% from 2025 to 2030, culminating in a forecasted valuation of US$140.84 billion by the end of the period.
TT Electronics Achieves ISO 13485 Medical Certification at Mexicali EMS Facility
06/27/2025 | TT ElectronicsThis milestone underscores TT Electronics’ commitment to delivering high-quality, compliant, and reliable manufacturing solutions to its global customers in healthcare and life sciences.
Benchmark Strengthens Presence in Jalisco with Grand Opening of Advanced Manufacturing Facility in Guadalajara
06/21/2025 | BUSINESS WIREBenchmark Electronics, Inc., a global provider of engineering, design, and manufacturing services, celebrated the grand opening of its brand-new manufacturing facility in Guadalajara, Mexico.