Deep Learning will Provide Best-in-Class Performance for Demand, Fraud and Failure Predictions by 2019
September 21, 2017 | Gartner, Inc.Estimated reading time: 3 minutes
Deep learning, a variation of machine learning (ML), represents the major driver toward artificial intelligence (AI). As deep learning delivers superior data fusion capabilities over other ML approaches, Gartner, Inc. predicts that, by 2019, deep learning will be a critical driver for best-in-class performance for demand, fraud and failure predictions.
"Deep learning is here to stay and expands ML by allowing intermediate representations of the data," said Alexander Linden, research vice president at Gartner. "It ultimately solves complex, data-rich business problems. Deep learning can, for example, give promising results when interpreting medical images in order to diagnose cancer early. It can also help improve the sight of visually impaired people, control self-driving vehicles, or recognize and understand a specific person's speech."
During Gartner Symposium/ITxpo, which is taking place in Cape Town until Thursday, Gartner analysts discussed the latest trends in how ML drives AI.
Deep learning also inherits all the benefits of ML. Several breakthroughs in cognitive domains demonstrate this. Baidu's speech-to-text services are outperforming humans in similar tasks; PayPal is using deep learning as a best-in-class approach to block fraudulent payments and has cut its false-alarm rate in half, and Amazon is also applying deep learning for best-in-class product recommendations.
Today, most common use cases of ML through deep learning are in image, text and audio processing — but increasingly also in predicting demand, determining deficiencies around service and product quality, detecting new types of fraud, streaming analytics on data in motion, and providing predictive or even prescriptive maintenance. However, ML and AI initiatives require more than just data and algorithms to be successful. They need a blend of skills, infrastructure and business buy-in.
How to Staff for ML
Most organizations lack the necessary data science skills for simple ML solutions, let alone deep learning. If ML projects cannot be addressed with easy-to-use applications, IT leaders will require ML expertise.
"In this situation, IT leaders will be seeking specialists, called data scientists," said Mr. Linden. "Data scientists can extract a wide range of knowledge from data, can see an overview of the end-to-end process, and can solve data science problems."
Gartner predicts that 80% of data scientists will have deep learning in their toolkits by 2018. "If one of your teams possesses a good understanding of data, has business domain expertise and can interpret outputs, it is ready to start ML experiments," said Mr. Linden. "Even if your team lacks experience with algorithms, it can start with packaged applications or APIs."
Starting ML and AI Successfully
Using ML and AI to add value to a business is complicated. "Don't deliberately meet all ML prerequisites exactly — instead find the right problem to solve," said Mr. Linden. "It is a good idea to start ML by using the same data you use in your popular reports, such as orders by a region. Then you can apply ML to make forward-looking predictions, for example a forecast for the same orders by a region for the next month. This way it extends on the after-the-fact reports to show business stakeholders the art of the possible with ML."
Nevertheless, ML has limitations. "An ML system can make the best possible decision if it has enough data to learn from — such as millions of priced items and their availability — but it cannot judge whether any of the resulting decisions are OK ethically," added Mr. Linden. A combination of data scientists' current experience and skills with new ML capabilities will be required for successful ML and AI adoption.
"What's hard for people is easy for ML, and what's hard for ML is easy for people," concluded Mr. Linden.
About Symposium/ITxpo
Additional information on AI trends will be examined at Gartner Symposium/ITxpo 2017.
Suggested Items
AI Boom Drives Surge in Data Center Interconnect Demand; Global Market Value to Grow 14.3% in 2025
05/19/2025 | TrendForceTrendForce reports that leading global telecom providers such as SK Telecom and Deutsche Telekom are rolling out Agentic AI services for general users as generative AI becomes increasingly integrated into daily life in 2025.
FTG Achieves Major Milestone with TCCA Certification for Edge+ on Boeing 737NG Family
05/16/2025 | Globe NewswireFiran Technology Group Corporation (FTG) announced that its FLYHT subsidiary has been awarded a Supplemental Type Certificate (STC) by Transport Canada Civil Aviation (TCCA) for the AFIRS Edge+™ product on the Boeing 737NG family of aircraft.
Future-proofing Electronics: ChemFORWARD Works Toward Collaboration for Safer Chemistry
05/19/2025 | Rachel Simon, ChemFORWARDThe electronics industry is facing a critical juncture. As consumer demand for sustainable products rises and regulatory pressures intensify, companies must prioritize the safety of their products and processes. This means not only complying with evolving chemical restrictions but also proactively seeking safer alternatives.
Corning Collaborates with Broadcom to Accelerate AI Data Center Processing Capacity
05/14/2025 | BUSINESS WIRECorning Incorporated, a world leader in glass science and optical physics, today announced a collaboration with Broadcom Incorporated, a leading supplier in the semiconductor field, on a co-packaged optics (CPO) infrastructure that will significantly increase processing capacity within data centers.
Breaking Down Barriers: The Connectivity of Machines in SMT Production Lines
05/14/2025 | Bill Cardoso, Creative ElectronAs the world increasingly moves toward erecting trade barriers, we find ourselves in a paradox. Across the globe, the rise in tariffs and protectionist policies is creating a more fragmented global economy, with nations seeking to insulate themselves from external economic pressures. However, within the confines of the SMT production line, the trend is moving in precisely the opposite direction—toward greater connectivity, integration, and collaboration. Rather than isolating one machine from another, SMT production lines are increasingly interconnected, with data being shared across various stages of the process to improve quality, efficiency, and defect detection.