Ultra-Fast and Ultra-Sensitive Hydrogen Sensor
October 2, 2017 | KAISTEstimated reading time: 1 minute

A KAIST team made an ultra-fast hydrogen sensor that can detect hydrogen gas levels under 1% in less than seven seconds. The sensor also can detect hundreds of parts per million levels of hydrogen gas within 60 seconds at room temperature.
A research group under Professor Il-Doo Kim in the Department of Materials Science and Engineering at KAIST, in collaboration with Professor Reginald M. Penner of the University of California-Irvine, has developed an ultra-fast hydrogen gas detection system based on a palladium (Pd) nanowire array coated with a metal-organic framework (MOF).
Hydrogen has been regarded as an eco-friendly next-generation energy source. However, it is a flammable gas that can explode even with a small spark. For safety, the lower explosion limit for hydrogen gas is 4 vol% so sensors should be able to detect the colorless and odorless hydrogen molecule quickly. The importance of sensors capable of rapidly detecting colorless and odorless hydrogen gas has been emphasized in recent guidelines issued by the U.S. Department of Energy. According to the guidelines, hydrogen sensors should detect 1 vol% of hydrogen in air in less than 60 seconds for adequate response and recovery times.
To overcome the limitations of Pd-based hydrogen sensors, the research team introduced a MOF layer on top of a Pd nanowire array. Lithographically patterned Pd nanowires were simply overcoated with a Zn-based zeolite imidazole framework (ZIF-8) layer composed of Zn ions and organic ligands. ZIF-8 film is easily coated on Pd nanowires by simple dipping (for 2–6 hours) in a methanol solution including Zn (NO3)2·6H2O and 2-methylimidazole.
As synthesized ZIF-8 is a highly porous material composed of a number of micro-pores of 0.34 nm and 1.16 nm, hydrogen gas with a kinetic diameter of 0.289 nm can easily penetrate inside the ZIF-8 membrane, while large molecules (> 0.34 nm) are effectively screened by the MOF filter. Thus, the ZIF-8 filter on the Pd nanowires allows the predominant penetration of hydrogen molecules, leading to the acceleration of Pd-based H2 sensors with a 20-fold faster recovery and response speed compared to pristine Pd nanowires at room temperature.
Professor Kim expects that the ultra-fast hydrogen sensor can be useful for the prevention of explosion accidents caused by the leakage of hydrogen gas. In addition, he expects that other harmful gases in the air can be accurately detected through effective nano-filtration by using of a variety of MOF layers.
Suggested Items
Infineon Gains Approval of Science Based Targets Initiative for Ambitious CO2 Emission Reduction Targets
05/20/2025 | InfineonInfineon Technologies AG has reached another milestone in its decarbonization efforts: The Science Based Targets initiative (SBTi) has approved the company's ambitious greenhouse gas emission reduction targets.
NY CREATES, Fraunhofer Institutes Announce Joint Development Agreement to Advance Memory Devices at the 300mm Wafer Scale
05/16/2025 | NY CREATESNY CREATES and Fraunhofer IPMS announced at a signing ceremony a new Joint Development Agreement (JDA) to drive research and development focused on memory devices.
Kitron Signs €7 Million Annual Manufacturing Agreement for Advanced Sensor Technology
05/09/2025 | KitronKitron has entered into a multi-year agreement with a U.S.-based customer to manufacture advanced sensor-based products intended for the European market.
India-based Tech Vendors Must Prioritize Localization and Strategic Partnerships to Succeed in the Indian Market
04/28/2025 | IDCIndia’s technology market is evolving rapidly, and local tech vendors must prioritize AI investments, forge strategic vendor alliances, and navigate increasing regulatory challenges to seize new growth opportunities, according to the report, IDC Playbook Tech Sales Leaders - An India Technology Market Expansion Sales Playbook for India-Based Vendors.
QpiAI Announces Dawn of Quantum Era in India With 25 Qubit Quantum Computer
04/16/2025 | BUSINESS WIREQpiAI, a leader in quantum computing and generative AI, announced its First Quantum computer launch code named QpiAI Indus Quantum Computer.