Researchers Aim Beyond Wearables with Project Combining Art, Medicine
October 4, 2017 | Harvard UniversityEstimated reading time: 2 minutes

Harvard and MIT researchers have developed smart tattoo ink capable of monitoring health by changing color to tell an athlete if she is dehydrated or a diabetic if his blood sugar rises.
The work, conducted by two postdoctoral fellows at Harvard Medical School and colleagues led by Katia Vega at MIT’s Media Lab, paired biosensitive inks developed at Harvard with traditional tattoo artistry as a way to overcome some of the limitations of current biomedical monitoring devices.
“We were thinking: New technologies, what is the next generation after wearables?” said Ali Yetisen, who is a Tosteson postdoctoral fellow at HMS and Massachusetts General Hospital. “And so we came up with the idea that we could incorporate biosensors in the skin.”
Tattoos as medical condition monitors
A drawback of current wearable monitoring devices is that they don’t seamlessly integrate with the body, Yetisen said. Short battery life is a concern and so is the need for wireless connectivity, neither of which is an issue with the simple, color-based interface of biosensitive tattoo ink.
“We wanted to go beyond what is available through wearables today,” Yetisen said.
Nan Jiang, a postdoctoral fellow at Harvard Medical School and Brigham and Women’s Hospital, said the project, “Dermal Abyss,” was conducted as a proof of concept, and that further refinements — stabilizing ink so designs don’t fade or diffuse into surrounding tissue — would be needed for a medical product.
HMS postdoctoral fellows Ali Yetisen (left) and Nan Jiang collaborated with MIT researchers to develop the biosensitive tattoo ink, which unlike current wearable monitoring devices, doesn’t require batteries or wireless connectivity.
The Dermal Abyss tattoo inks change color according to the chemistry of the body’s interstitial fluid, which can be used as a surrogate for constituents of the blood. Inks developed so far change from green to brown as glucose concentration increases. The team also developed a green ink, viewable under blue light, that grows more intense as sodium concentration rises, an indication of dehydration. Researchers tattooed the inks onto segments of pig skin and noted how they changed color or intensity in response to different biomarkers.
Jiang and Yetisen said that once the bugs are worked out, the applications for biologically-sensitive ink are fairly broad. Inks, Yetisen said, could be incorporated into long-lasting tattoos for chronic conditions or into temporary designs for shorter-duration monitoring. Ink can even be invisible, Yetisen said, readable under only particular kinds of light. That light could come from something as ubiquitous as a smartphone.
Yetisen has already developed an app that can analyze a picture of a sensor and provide quantitative diagnostic results. While patients are an obvious potential market, Yetisen said the technology could be used in astronauts, for whom continuous health monitoring is desirable.
Jiang said the project’s purpose was to excite artists and scientists alike about the potential for such technology, and to stimulate discussion of ethical issues it might raise, such as people’s willingness to have health information displayed for all to see.
“The purpose of the work is to light the imagination of biotechnologists and stimulate public support for such efforts,” Jiang said. “These questions of how technology impacts our lives must be considered as carefully as the design of the molecular sensors patients may someday carry embedded in their skin.”
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Armstrong Asia Signs MOU with Checkmate Capital Group to Explore Strategic Collaboration
09/15/2025 | GlobeNewswireArmstrong Asia, a leading Singapore-based manufacturer of flexible material solutions with 16 factories across 7 countries in Asia, has signed a Memorandum of Understanding (MOU) with Checkmate Capital Group, LLC (“Checkmate Capital”), a U.S.-based investment and advisory firm active in the Asia-Pacific and North American regions, focused on cross-border transactions in the life sciences, medical technology, and other industries.
Nordson MEDICAL Divests Contract Manufacturing, Refocuses on Proprietary Components
09/03/2025 | BUSINESS WIRENordson Corporation has completed the divestiture of select product lines within its medical contract manufacturing business to Quasar Medical.
Medical Device Contract Manufacturing Market Worth $140.84 Billion by 2030 with 10.9% CAGR
08/25/2025 | PRNewswireThe global Medical Device Contract Manufacturing Market, valued at US$78.58 billion in 2024, stood at US$83.77 billion in 2025 and is projected to advance at a resilient CAGR of 10.9% from 2025 to 2030, culminating in a forecasted valuation of US$140.84 billion by the end of the period.
TT Electronics Achieves ISO 13485 Medical Certification at Mexicali EMS Facility
06/27/2025 | TT ElectronicsThis milestone underscores TT Electronics’ commitment to delivering high-quality, compliant, and reliable manufacturing solutions to its global customers in healthcare and life sciences.
Benchmark Strengthens Presence in Jalisco with Grand Opening of Advanced Manufacturing Facility in Guadalajara
06/21/2025 | BUSINESS WIREBenchmark Electronics, Inc., a global provider of engineering, design, and manufacturing services, celebrated the grand opening of its brand-new manufacturing facility in Guadalajara, Mexico.