Hybrid Biological Cell Separations Technology for Lab-On-Chip Medical Devices
October 10, 2017 | Rochester Institute of TechnologyEstimated reading time: 2 minutes

Research being done at Rochester Institute of Technology to refine lab-on-chip devices—highly sophisticated laboratories on microchips—will provide more detailed and timely information to detect diseases such as cancer.
Blanca Lapizco-Encinas, a faculty-researcher in RIT’s Kate Gleason College of Engineering, is improving the process of separating biological cells and biomolecules using chromatography principles, a well-established technique for separating proteins, combined with a newer technique called dielectrophoresis, a process that uses electrical current to separate biomolecules.
In biomedical analysis, clinicians may have to analyze complex blood samples consisting of cells, proteins and other micron-sized particles, in an effort to separate healthy and diseased cells. Improved microfluidic techniques with the potential to separate cells found in bio-fluids, are useful in settings where rapid results are essential such as testing for food and water safety or clinical analysis of disease.
“You put into a device a sample with six or seven different types of particles and you can separate them, in some cases in less than two minutes, just by applying electric fields,” Lapizco-Encinas explained. “For lab-on-a-chip devices, you want results in minutes, because that is what is attractive about these portable and inexpensive devices—you can get a response right away.”
Lapizco-Encinas is building micro-channels into lab-on-chip devices that will have a dense array of insulating structures to emulate the stationary phase found in chromatographic systems. The new arrays have distinct columns where particles will be retained. Lab-on-chip devices are often made of glass or a silicon base where bio-fluids stream through etched channels. Devices also have complex sensors and electronics embedded, and the combined technologies will advance screening and laboratory analysis applications through a new technique she is calling dielectrophoresis chromatography.
“In chromatography, for example, particles enter a chromatographic column, and different particles are retained in different degrees. Particles that have a lower retention get eluted, or separated, from the column earlier. And particles that have a stronger retention get eluted from the column later, thus enabling a separation,” said Lapizco-Encinas, an associate professor of biomedical engineering who leads the Microscale BioSeparations Laboratory in RIT’s Kate Gleason College of Engineering. She was recently awarded $299, 611 from the National Science Foundation (NSF) for the hybrid microfluidics technique titled, “Development of dielectrophoresis chromatography employing asymmetric insulating structures and electric fields.”
The new research, utilizing electroosmotic flow—the motion of liquid in chemical separations—is expected to drive particles across the microchannel. This process of electroosmotic flow offers the potential for the biomolecules to be manipulated in real-time, allowing for dynamic separation schemes. This work expands Lapizco-Encinas’ previous research that focused on the development of multi-channel devices where fluid samples are assessed after being exposed to electrical currents that cause the bio-particles to separate for more efficient analysis. Through past research, she and her team advanced device system designs and determined an optimal threshold of electrical fields applied to adequately manipulate the fluids and ensure that live cells are not damaged. Adding chromatographic principles to this foundational work is underway.
“We have some preliminary designs; we will move forward with the research in two directions. We do significant mathematical modeling that allows us to design a system and then we do the experimental testing. My lab does both. We have preliminary designs we are currently testing, and those designs and experiments help us to improve the model and move forward to the next generation.”
Suggested Items
ESIA Statement on EU Funding for Competitiveness: A New Approach is Needed
05/09/2025 | ESIAThe European Semiconductor Industry Association (ESIA), representing the European leadership in semiconductor research, design, and manufacturing, would like to underscore the need for targeted and sustained investment to strengthen Europe’s strategic sectors.
New Database of Materials Accelerates Electronics Innovation
05/05/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
Hon Hai Research Institute Demonstrates Superiority of Shallow Quantum Circuits Beyond Prior Understanding
05/05/2025 | Hon Hai Technology GroupHon Hai Research Institute (HHRI), in a milestone collaborative effort, has demonstrated that parallel quantum computation can exhibit greater computational power than previously recognized, with its research results accepted for publication in the prestigious journal Nature Communications.
New Database of Materials Accelerates Electronics Innovation
05/02/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
Meet Thiago Guimaraes, IPC's New Director of Industry Intelligence
05/05/2025 | Chris Mitchell, IPC VP, Global Government RelationsThe fast pace of innovation in the electronics manufacturing industry means business owners must continuously adapt their processes and capabilities to meet changing customer demands and market trends. To that end, IPC has hired Thiago Guimaraes as the new director of Industry Intelligence. In this interview, Thiago shares key goals and objectives that could revolutionize the industry as he helps stakeholders navigate industry trends and challenges.