Strategies for Developing Copper Plating Systems
October 16, 2017 | Patty Goldman, I-Connect007Estimated reading time: 4 minutes
I met with Dr. Albert Angstenberger, global technology manager for metallization with MacDermid Enthone Electronics Solutions, while at SMTA International. He presented a most interesting paper on copper pillar plating systems that we hope to publish in The PCB Magazine sometime in the future.
Patty Goldman: Albert, I understand you presented a paper here on copper pillar plating systems. How was it received?
Albert Angstenberger: Yes, that’s correct. It went well. To some extent I think I overshot the audience, maybe the firework was too big, because to me it seemed like these people would be to some extent stunned.
Goldman: Tell me about the paper. What was it about?
Angstenberger: It was about copper plating, particularly the strategies, how we develop new plating chemistry for electroplating, copper metallization of printed circuit boards and organic substrates or silicons. Getting away the heat and coping with the speed.
Right now, we have merged MacDermid and Enthone, so at the end of the day we have combined our capabilities and our strengths. As far as metallization and copper plating is concerned, we're covering almost every aspect of interconnect technology—starting from the die, rerouting the die down to the printed circuit board and with all the intermediate steps. My paper was dealing with the copper plating of whatever kind of substrate.
So, it's all about our company's strategies, technical strategies, what we do to develop suitable plating chemistry for successfully copper-plating very tiny through-holes, and a very tiny bump-up to microscopic through-holes.
Goldman: Tell me more about the thermal management part of it.
Angstenberger: One of the two most important aspects is to get the heat away from the die, through the various substrates, through the printed circuit board and out into the environment. That's one aspect. The other aspect is to provide very fast interconnections—frequency. So, the shortest interconnections from the die through the substrate to the exterior to the interfaces without any major concerns, as far as parasitics are concerned, like undistorted signal propagation.
When I grew up in that industry, we did a lot of wire bonding. To some extent, it was a painful exercise because once you wire bond, in particular with high-frequency applications, you had to consider the signal losses or parasitic effects, like capacitance or inductance issues. Right now, our whole industry is in a very good technological position to provide very fast, very short tracks for signal propagation, as well as to get away the heat. This doesn’t just relate to the high-frequency applications but also to simple technological applications like LEDs, for instance.
Goldman: They make a lot of heat.
Angstenberger: Yes, they do. The hotter they get, the more they degrade over time. In my younger days, I would have called it the thermal suicide of an integrated circuit. Most of the interconnect applications are trying to get as much copper pillar or copper bump interconnects to cope with the heat, of course, and to cope with the high-frequency aspects.
Goldman: I find that very interesting. Tell me more about your background.
Angstenberger: I got started in the printed circuit industry in '83 with a small- to medium-sized enterprise in Germany called Leitron. There have been a couple of companies with that name. When we started, it was about 50−60% PCBs going into the computer business. In those days, there was an American company coming up to the market with the first, believe it or not, foldable laptop. It was a very easy catch, not very sophisticated. The company was named Conversion, and they were one of our first and biggest customers where we were providing two-layer, four-layer, even six-layer boards. Prior to that, more of our customers were military, defense, aerospace and space application.
Goldman: You were making the leading-edge boards at the time, right?
Angstenberger: Yes, in those days. I guess it was like '84, '85 when we were probably one of the first companies in the world doing blind and buried vias, sequential lamination. Of course, just to complete the orchestra we did copper-clad, metal cores, heavy metal copper, 0.3 millimeter, 0.5 millimeter metal cores being incorporated into the board.
After Leitron, I went to Hewlett-Packard on the German side in Boeblingen. When I joined HP, it was like 13 different global printed circuit shops. When I left HP, there was only one left, which was the Boeblingen site. Then I was freelancing for six years or so, working for mostly European big printed circuit shops helping with engineering, helping with troubleshooting and all that. It was in '98 when I joined the company Diehl, which is in defense. I was responsible for development marketing and sales of miniaturized mil spec computers.
And after that I joined Taconic, the PTFE laminate manufacturer for some nine years . I took one year off because I had my spine screwed together due to some kind of misalignment. Then about four years ago some headhunters grabbed me by the hair for MacDermid. I'm global technology manager for metallization, so I act as an interface between the customer’s new requirements and our applications, our R&D, etc. The easiest way to describe it is like I’m a spokesman.
Goldman: Well, that’s quite a career. Anything more about your paper or thermal management that you'd like to add?
Angstenberger: Not necessarily. What I was trying to provide people with is a thread about the strategy and how to get the heat away from the die through the environment. Also, how to improve electrical or signal characteristics. On the other hand, it was also to tell the people something about our strategies and what we do to provide very effective, well-functioning electroplating and copper plating products.
Goldman: Albert, thank you.
Angstenberger: You're welcome.
Suggested Items
Unlocking Advanced Circuitry Through Liquid Metal Ink
10/31/2024 | I-Connect007 Editorial TeamPCB UHDI technologist John Johnson of American Standard Circuits discusses the evolving landscape of electronics manufacturing and the critical role of innovation, specifically liquid metal ink technology, as an alternate process to traditional metallization in PCB fabrication to achieve ever finer features and tighter tolerances. The discussion highlights the benefits of reliability, efficiency, and yields as a tradeoff to any increased cost to run the process. As this technology becomes better understood and accepted, even sought out by customers and designers, John says there is a move toward mainstream incorporation.
Fresh PCB Concepts: The Critical Nature of Copper Thickness on PCBs
10/31/2024 | Team NCAB -- Column: Fresh PCB ConceptsPCBs are the backbone of modern electronics and the copper layers within these boards serve as the primary pathways for electrical signals. When designing and manufacturing PCBs, copper thickness is one of the most critical factors and significantly affects the board’s performance and durability. The IPC-6012F specification, the industry standard for the performance and qualification of rigid PCBs, sets clear guidelines on copper thickness to ensure reliability in different environments and applications.
Book Excerpt: The Printed Circuit Designer’s Guide to... DFM Essentials, Ch. 1
10/25/2024 | I-Connect007The guidelines offered in this book are based on both ASC recommendations and IPC standards with the understanding that some may require adjustment based on the material set, fabricator processes, and other design constraints. This chapter details high-frequency materials, copper foil types, metal core PCBs, and the benefits of embedded capacitance and resistor materials in multilayer PCBs.
The Cost-Benefit Analysis of Direct Metallization
10/21/2024 | Carmichael Gugliotti, MacDermid AlphaCarmichael Gugliotti of MacDermid Alpha discusses the innovative realm of direct metallization technology, its numerous applications, and significant advantages over traditional processes. Carmichael offers an in-depth look at how direct metallization, through developments such as Blackhole and Shadow, is revolutionizing PCB manufacturing by enhancing efficiency, sustainability, and cost-effectiveness. From its origins in the 1980s to its application in cutting-edge, high-density interconnects and its pivotal role in sustainability, this discussion sheds light on how direct metallization shapes the future of PCB manufacturing across various industries, including automotive, consumer electronics, and beyond.
Connect the Dots: Designing for Reality—Pattern Plating
10/16/2024 | Matt Stevenson -- Column: Connect the DotsIn the previous episode of I-Connect007’s On the Line with… podcast, we painted the picture of the outer layer imaging process. Now we are ready for pattern plating, where fabrication can get tricky. The board is now ready to receive the copper traces, pads, and other elements specified in the original CAD design. This article will lay out the pattern plating process and discuss constraints in the chemistries that must be properly managed to meet the customer's exacting manufacturing tolerances.