Nanotube Fiber Antennas as Capable as Copper
October 23, 2017 | Rice UniversityEstimated reading time: 2 minutes

Fibers made of carbon nanotubes configured as wireless antennas can be as good as copper antennas but 20 times lighter, according to Rice University researchers. The antennas may offer practical advantages for aerospace applications and wearable electronics where weight and flexibility are factors.
The discovery offers more potential applications for the strong, lightweight nanotube fibers developed by the Rice lab of chemist and chemical engineer Matteo Pasquali. The lab introduced the first practical method for making high-conductivity carbon nanotube fibers in 2013 and has since tested them for use as brain implants and in heart surgeries, among other applications.
The research could help engineers who seek to streamline materials for airplanes and spacecraft where weight equals cost. Increased interest in wearables like wrist-worn health monitors and clothing with embedded electronics could benefit from strong, flexible and conductive fiber antennas that send and receive signals, Pasquali said.
The Rice team and colleagues at the National Institute of Standards and Technology (NIST) developed a metric they called “specific radiation efficiency” to judge how well nanotube fibers radiated signals at the common wireless communication frequencies of 1 and 2.4 gigahertz and compared their results with standard copper antennas. They made thread comprising from eight to 128 fibers that are about as thin as a human hair and cut to the same length to test on a custom rig that made straightforward comparisons with copper practical.
“Antennas typically have a specific shape, and you have to design them very carefully,” said Rice graduate student Amram Bengio, the paper’s lead author. “Once they’re in that shape, you want them to stay that way. So one of the first experimental challenges was getting our flexible material to stay put.”
Contrary to earlier results by other labs (which used different carbon nanotube fiber sources), the Rice researchers found the fiber antennas matched copper for radiation efficiency at the same frequencies and diameters. Their results support theories that predicted the performance of nanotube antennas would scale with the density and conductivity of the fiber.
“Not only did we find that we got the same performance as copper for the same diameter and cross-sectional area, but once we took the weight into account, we found we’re basically doing this for 1/20th the weight of copper wire,” Bengio said.
“Applications for this material are a big selling point, but from a scientific perspective, at these frequencies carbon nanotube macro-materials behave like a typical conductor,” he said. Even fibers considered “moderately conductive” showed superior performance, he said.
Although manufacturers could simply use thinner copper wires instead of the 30-gauge wires they currently use, those wires would be very fragile and difficult to handle, Pasquali said.
“Amram showed that if you do three things right — make the right fibers, fabricate the antenna correctly and design the antenna according to telecommunication protocols — then you get antennas that work fine,” he said. “As you go to very thin antennas at high frequencies, you get less of a disadvantage compared with copper because copper becomes difficult to handle at thin gauges, whereas nanotubes, with their textile-like behavior, hold up pretty well.”
Co-authors of the paper are, from Rice, graduate students Lauren Taylor and Peiyu Chen, alumnus Dmitri Tsentalovich and Aydin Babakhani, an associate professor of electrical and computer engineering, and, from NIST in Boulder, Colo., postdoctoral researcher Damir Senic, research engineer Christopher Holloway, physicist Christian Long, research scientists David Novotny and James Booth and physicist Nathan Orloff. Pasquali is a professor of chemical and biomolecular engineering, of materials science and nanoengineering and of chemistry.
The U.S. Air Force supported the research.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Episode 6 of Ultra HDI Podcast Series Explores Copper-filled Microvias in Advanced PCB Design and Fabrication
10/15/2025 | I-Connect007I-Connect007 has released Episode 6 of its acclaimed On the Line with... American Standard Circuits: Ultra High Density Interconnect (UHDI) podcast series. In this episode, “Copper Filling of Vias,” host Nolan Johnson once again welcomes John Johnson, Director of Quality and Advanced Technology at American Standard Circuits, for a deep dive into the pros and cons of copper plating microvias—from both the fabricator’s and designer’s perspectives.
Nolan’s Notes: Tariffs, Technologies, and Optimization
10/01/2025 | Nolan Johnson -- Column: Nolan's NotesLast month, SMT007 Magazine spotlighted India, and boy, did we pick a good time to do so. Tariff and trade news involving India was breaking like a storm surge. The U.S. tariffs shifted India from one of the most favorable trade agreements to the least favorable. Electronics continue to be exempt for the time being, but lest you think that we’re free and clear because we manufacture electronics, steel and aluminum are specifically called out at the 50% tariff levels.
MacDermid Alpha & Graphic PLC Lead UK’s First Horizontal Electroless Copper Installation
09/30/2025 | MacDermid Alpha & Graphic PLCMacDermid Alpha Electronics Solutions, a leading supplier of integrated materials and chemistries to the electronics industry, is proud to support Graphic PLC, a Somacis company, with the installation of the first horizontal electroless copper metallization process in the UK.
Electrodeposited Copper Foils Market to Grow by $11.7 Billion Over 2025-2032
09/18/2025 | Globe NewswireThe global electrodeposited copper foils market is poised for dynamic growth, driven by the rising adoption in advanced electronics and renewable energy storage solutions.
MacDermid Alpha Showcases Advanced Interconnect Solutions at PCIM Asia 2025
09/18/2025 | MacDermid Alpha Electronics SolutionsMacDermid Alpha Electronic Solutions, a global leader in materials for power electronics and semiconductor assembly, will showcase its latest interconnect innovations in electronic interconnect materials at PCIM Asia 2025, held from September 24 to 26 at the Shanghai New International Expo Centre, Booth N5-E30