'Intrachip' Micro-Cooling System for High-Performance Radar, Supercomputers
October 25, 2017 | Purdue UniversityEstimated reading time: 6 minutes
“So, instead of a channel being 5,000 microns in length, we shorten it to 250 microns long,” Garimella said. “The total length of the channel is the same, but it is now fed in discrete segments, and this prevents major pressure drops. So this represents a different paradigm.”
Peroulis and his students handled fabrication of the channels, a task made especially difficult by the need for “high aspect ratios,” meaning the microscopic grooves are far deeper than they are wide. The channels were etched in silicon with a width of about 15 microns but a depth of up to 300 microns.
“So, they are about 20 times as deep as they are wide, which is a non-trivial challenge from a fabrication perspective, particularly for repeatable and low-cost manufacturing processes,” Peroulis said.
Janes and his students designed and built the intricate heating and sensing portions of the testing apparatus.
“It is a complex task to be able to simulate the generation of hotspots and different heating scenarios while simultaneously having an accurate measure of the temperatures” Janes said.
Other members of the team focused on computational models to describe the physics of the cooling technology.
The new journal paper was authored by Drummond; doctoral student Doosan Back; Michael D. Sinanis, a manufacturing engineer and process development manager; Janes; Peroulis; Weibel and Garimella. Although the team has recently completed the DARPA-funded project, the overall research is ongoing.
The technology has evolved from work originating in the Purdue-based National Science Foundation Cooling Technologies Research Center. The center, formed in 1999, is a consortium of corporations, government laboratories and the university working to overcome heat-generation problems in electronic systems by developing new compact cooling technologies. More than 60 undergraduate students and about 100 graduate students have performed research through the center. The center also has involved about 15 Purdue faculty members from a variety of fields, from electrical engineering to chemistry.
In 2011, Garimella received the NSF Industry/University Cooperative Research Center Association's Alexander Schwarzkopf Prize for Technological Innovation on behalf of the cooling-research center. Earlier, Indiana's 21st Century Research and Technology Fund provided $3.8 million to help commercialize an advanced cooling system for hybrid and electric cars. Research in the center conducted in partnership with Toyota in 2016 led to an R&D 100 Award, given annually to the top 100 innovations recognized by R&D Magazine.
Page 3 of 3Suggested Items
ESD Alliance Reports Electronic System Design Industry Posts $5.1 Billion in Revenue in Q1 2025
07/16/2025 | SEMIElectronic System Design (ESD) industry revenue increased 12.8% to $5,098.3 million in the first quarter of 2025 from the $4,521.6 million registered in the first quarter of 2024, the ESD Alliance, a SEMI Technology Community, announced in its latest Electronic Design Market Data (EDMD) report.
Japan’s OHISAMA Project Aims to Beam Solar Power from Space This Year
07/14/2025 | I-Connect007 Editorial TeamJapan could be on the cusp of making history with its OHISAMA project in its quest to become the first country to transmit solar power from space to Earth, The Volt reported.
Redwire Announces Addition of the Edge Autonomy Stalker Uncrewed Aerial System to DoD’s Blue List of Approved Drones
07/14/2025 | BUSINESS WIRERedwire Corporation, a global leader in aerospace and defense technology solutions, announced that the Stalker uncrewed aerial system (UAS), developed by Redwire’s wholly owned subsidiary Edge Autonomy, has been granted an Authority to Operate (ATO) and is now on the Defense Innovation Unit (DIU) Blue UAS List.
OSI Systems Receives $34 Million Contract for Cargo and Vehicle Inspection Systems
07/11/2025 | BUSINESS WIREOSI Systems, Inc. announced that its Security division has been awarded a contract worth approximately $34 million by an international customer.
Microchip Expands Space-Qualified FPGA Portfolio with New RT PolarFire® Device Qualifications and SoC Availability
07/10/2025 | MicrochipContinuing to support the evolving needs of space system developers, Microchip Technology has announced two new milestones for its Radiation-Tolerant (RT) PolarFire® technology: MIL-STD-883 Class B and QML Class Q qualification of the RT PolarFire RTPF500ZT FPGA and availability of engineering samples for the RT PolarFire System-on-Chip (SoC) FPGA.