New-Wave Spintronics Comes to Light
November 24, 2017 | RIKENEstimated reading time: 2 minutes
Faint signals detected by a RIKEN team with a sensitive optical microscope have revealed a new way to realize low-energy spintronic devices.
Iron bar magnets possess a permanent magnetization because their atoms tend to align their electron spin with those of their neighbors. Materials with this property are known as ferromagnets.
Perturbing one spin in a ferromagnetic crystal can set off a wave of collective spin motion throughout the crystal. Such spin waves behave similarly to radio waves, making it easy to use them to carry encoded amplitude and phase information in a circuit. Unlike the conveyance of data by electric currents in conventional devices, this data flow does not involve the movement of electrons—eliminating unwanted heating, which plagues the design of modern devices.
When certain ferromagnetic materials are deposited on nonmagnetic insulators, the magnetic spins project perpendicularly from the interface, particularly if the ferromagnetic material is deposited as an ultrathin film. This orientation makes it simple to excite and manipulate spin waves using a static or oscillating electric field.
However, devices with sheet-like structures suffer from a different problem. “Since spin wave signals become weaker in thinner crystals, they are very small in ultrathin films,” says Bivas Rana from the RIKEN Center for Emergent Matter Science. “It’s difficult to detect them by conventional electrical means due to the huge background noise.”
Bivas Rana and his team have injected spin waves into ultrathin magnets.
Rana and colleagues tried an alternative approach to eliminate stray electrical signals from spin-wave measurements. Through a special optical–magnetic microscope known as a Kerr microscope, they used changes in the intensity and polarization of light beams reflected off magnetic surfaces to detect time-dependent spin-wave motion with an accuracy of picoseconds (10−12 second) and a spatial resolution of a few hundred nanometers.
When the researchers tested a 2-nanometer-thick ferromagnetic film with their Kerr microscope, they spotted something unexpected—an electric field produced by a simple electrode excited linear propagating spin waves (Fig. 1). This is the first time this has been achieved. Since the excitation of these spin waves does not involve charge flow, it will help to develop spintronics devices with ultralow power consumptions.
Unlike the conventional way of exciting spin waves that uses a magnetic field induced by an antenna, spin waves were initially excited in a localized area under the electrode. “Restricting the excitation area under the electrodes could prove crucial for submicrometer-scale spintronic devices since we can place several devices for voltage excitation very close to each other without cross-talk,” Rana explains. “We’re proposing voltage-controlled nanochannels to propagate spin waves, and the nanochannels can be integrated into any shape on a much wider waveguide.”
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Target Condition: Floor Planning Without a Floor
08/27/2025 | Kelly Dack -- Column: Target ConditionBy a show of hands, how many PCB designers have been asked to start a layout without a board outline, keep-out zones, or even height constraints? How many have had to work within a specific enclosure before the schematic was finalized? If this sounds familiar, you're not alone. Starting a PCB layout without critical constraints is like hiring an interior designer to buy furniture and carpet for a house you haven’t even purchased yet, or, even worse, trying to fit four bedrooms' worth of furniture in a one-room cabin.
L3Harris Delivers Electric Thrusters for Lunar-Orbiting Gateway
08/12/2025 | L3Harris TechnologiesL3Harris Technologies has delivered three Advanced Electric Propulsion System (AEPS) thrusters to NASA for final testing before integrating them into the Power and Propulsion Element of the lunar-orbiting Gateway station.
Schneider Electric Reinforces India Strategy with Acquisition of Remaining Stake
07/31/2025 | Schneider ElectricSchneider Electric, the global leader in the digital transformation of energy management and automation, today announces that it has signed an agreement to acquire the remaining 35% stake of Schneider Electric India Private Limited (“SEIPL”) from Temasek to reach full ownership.
Exro Provides Update on Facility Milestones
07/17/2025 | PRNewswireExro Technologies Inc., a leading clean technology company specializing in power control solutions for electric vehicles and energy storage, provides a further update on the satisfaction of the near-term strategic milestones established in connection with the company's US$30 million credit facility announced on May 16, 2025.
The Ultimate Dielectric Reference Is Here: iCD Launches Industry-Leading Materials Library
07/09/2025 | ICDIn-Circuit Design Pty Ltd (iCD), led by Managing Director Barry Olney, has just unveiled what is arguably the most comprehensive dielectric materials library ever compiled—the new standalone iCD Dielectric Materials Library.