Solar Cell Discovery Opens a New Window to Powering Tomorrow’s Cities
November 24, 2017 | Argonne National LaboratoryEstimated reading time: 3 minutes

Buildings of the future may come equipped with windows that can generate their own electricity, thanks to a finding of a team led by Jacqui Cole, a materials scientist from the University of Cambridge, UK, currently based at the U.S. Department of Energy’s (DOE) Argonne National Laboratory.
For the first time, Cole and colleagues determined the molecular structure of working solar cell electrodes within a fully assembled device that works like a window. The finding, published in Nanoscale, helps advance smart window technology that could enable cities to move closer to the goal of being energy sustainable.
“We just need a modest boost in performance to make these solar cells competitive.” – Jacqui Cole, 1851 Royal Commission 2014 Design Fellow, based at Argonne.
The experiments were performed on dye-sensitized solar cells, which are transparent and thus well-suited for use in glass. Attempts to create smart window technologies have been limited by the many unknown molecular mechanisms between the electrodes and electrolyte that combine to determine how the device operates.
“Most previous studies have modeled the molecular function of these working electrodes without considering the electrolyte ingredients,” Cole said. “Our work shows that these chemical ingredients can clearly influence the performance of solar cells, so we can now use this knowledge to tune the ions to increase photovoltaic efficiency.”
To make the discovery, Cole — the 1851 Royal Commission 2014 Design Fellow — and her colleagues used neutron reflectometry to probe the function and interplay of the electrolyte ingredients with electrodes of the dye-sensitized solar cells. Neutron reflectometry, similar to X-ray reflectometry techniques, allows scientists to measure the structure of thin films with high resolution. But it was the fact that the tests were performed in a window-like system that made for a significant discovery.
“Prior research considered the working electrodes outside the device, so there has been no path to determine how the different device components interact,” Cole said. “Our work signifies a huge leap forward as it’s the world's first example of applying in situ neutron reflectometry to dye-sensitized solar cells.”
Previous efforts to characterize the dye/titanium dioxide interface in these solar cells have been limited to determining this interfacial structure within an environment exposed to air or in a solvent medium. Because of these constraints, these solar cell environments are essentially artificial with limited relevance for window applications.
With this discovery, however, Cole and colleagues have moved beyond artificial constraints. In doing so, they can better understand how a thin-film electrode containing titanium dioxide, a naturally occurring compound found in paint, sunscreen and food coloring, can have a huge impact on solar cell efficiency.
“Our work has shown that certain chemical ingredients, some of which have so far been overlooked, can clearly influence the photovoltaic performance of these solar cells,” Cole said.
More efficient solar cells like these can move smart window technology closer to the marketplace, said Cole, adding that the science is almost there.
“We just need a modest boost in performance to make these solar cells competitive,” Cole said, “since price-to-performance governs the economics of the solar cell industry. And manufacturing dye-sensitized solar cells is very cheap relative to other solar cell technologies.”
Performance-wise, the cells recently broke a world record with a power conversion efficiency of 14.3 percent using a dye-sensitized electrode featuring two co-sensitized metal-free organic dyes. These dyes “promise cheaper, more environmentally friendly synthetic routes and greater molecular design flexibility than their metal-containing counterparts,” according to the paper.
The discovery was made with colleagues from the University of Cambridge, United Kingdom, the Australian Nuclear Science and Technology Organization and the Rutherford Appleton Laboratory, UK. Researchers are continuing to apply this materials characterization technique to dye-sensitized solar cells, which could reveal further molecular secrets and lead the way to future energy applications.
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Summit Interconnect Announces Appointment of Leo LaCroix as Chief Operating Officer
09/09/2025 | Summit Interconnect, Inc.Summit Interconnect, a leading North American manufacturer of Printed Circuit Boards (PCBs), today announced that Leo LaCroix has assumed the role of Chief Operating Officer (COO).
UHDI Fundamentals: UHDI Technology and Industry 4.0
09/03/2025 | Anaya Vardya, American Standard CircuitsUltra high density interconnect (UHDI) technology is rapidly transforming how smart systems are designed and deployed in the context of Industry 4.0. With its capacity to support highly miniaturized, high-performance, and densely packed electronics, UHDI is a critical enabler of the smart, connected, and automated industrial future. Here, I’ll explore the synergy between UHDI and Industry 4.0 technologies, highlighting applications, benefits, and future directions.
Mastering PCB Floor Planning
08/28/2025 | Stephen V. Chavez, Siemens EDAPlacement of PCB components is far more than just fitting components onto a board. It’s a strategic and critical foundational step, often called “floor planning,” that profoundly impacts the board’s performance, reliability, manufacturability, and cost. Floor planning ties into the solvability perspective, with performance and manufacturability being the other two competing perspectives for addressing and achieving success in PCB design.
Macronix Introduces Cutting-Edge Secure-Boot NOR Flash Memory
08/08/2025 | PRNewswireMacronix International Co., Ltd., a leading integrated device manufacturer in the non-volatile memory (NVM) market, announced ArmorBoot MX76, a robust NOR flash memory combining in a single device, the essential performance and an array of security features that deliver rapid boot times and iron-clad data protection.
UHDI Fundamentals: UHDI Technology and Industry 4.0
08/05/2025 | Anaya Vardya, American Standard CircuitsUltra high density interconnect (UHDI) technology is rapidly transforming how smart systems are designed and deployed in Industry 4.0. With its capacity to support highly miniaturized, high-performance, and densely packed electronics, UHDI is a critical enabler of the smart, connected, and automated industrial future. This article explores the synergy between UHDI and Industry 4.0 technologies, highlighting applications, benefits, and future directions.