-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueThe Hole Truth: Via Integrity in an HDI World
From the drilled hole to registration across multiple sequential lamination cycles, to the quality of your copper plating, via reliability in an HDI world is becoming an ever-greater challenge. This month we look at “The Hole Truth,” from creating the “perfect” via to how you can assure via quality and reliability, the first time, every time.
In Pursuit of Perfection: Defect Reduction
For bare PCB board fabrication, defect reduction is a critical aspect of a company's bottom line profitability. In this issue, we examine how imaging, etching, and plating processes can provide information and insight into reducing defects and increasing yields.
Voices of the Industry
We take the pulse of the PCB industry by sharing insights from leading fabricators and suppliers in this month's issue. We've gathered their thoughts on the new U.S. administration, spending, the war in Ukraine, and their most pressing needs. It’s an eye-opening and enlightening look behind the curtain.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Who Really Owns the PCB Layout?
December 13, 2017 | Paul Taubman, Nine Dot ConnectsEstimated reading time: 5 minutes

This article ran in last week's Inside Design Newsletter, but some readers were unable to access it due to a corrupted URL. We're publishing Paul Taubman's piece again this week. Enjoy! --Ed
One would think that the title of this article should be a no-brainer. The fact of the matter is that the ownership of this vital aspect of electronic design is not only cloudy, but it will become murkier in the next 10 years. This murkiness is also an opportunity for mechanical engineers who aren’t afraid to expand their horizons.
In order to understand the current climate, we have to look at the division of labor that took place in electronic design about 40 years ago. The labor was divided into two processes, with the first being the design itself. This process was (and still is) owned by the electrical engineers.
Though circuit design has changed, the methods for representing the circuit have not. Electrical engineers were designing circuits with discrete components such as transistors, amplifiers, resistors, capacitors, diodes, etc. They did not concern themselves with the physical details. They would call out values and key characteristics of the components. All of this design was and still is represented in an abstract form, meaning, the components are drawn using symbolic representations and the schematic drawings are dimensionless.
Electrical engineers were back then and are still taught circuit design theory. Granted, a good university program will demand some electronic lab classes; however, it is all done on proto boards to prove out some concept. What one will rarely find in a university classroom is a PCB design course. The only time an electrical engineering student will be exposed to a PCB is if he signs up for a senior project that requires the creation of a PCB.
The second step of the design process is the layout of the physical board. It was rare for the electrical engineer to layout the PCB. Once they were done with the circuit design, this was handled off to a layout artist. A layout artist may have gone through a technical school, but in many cases, they were tech-savvy individuals out of high school. They made the decisions as to how the schematic was to be represented in real life. It was an art form using Mylar and tape.
Throughout the 1970s, the integrated circuit (IC) chip became more prevalent. The functionality that was created by individual discrete components could now be etched in silicon and take up a space that was far smaller. This may have reduced the real estate used on the board for discrete components, but now there were more component pins to route in a small space.
By the mid-1980s, the Mylar and tape method of board layout was becoming a difficult process. The electrical engineers were not designing with discrete components, rather, they were designing with ICs. This required more than two layers of copper on the PCB. To remedy this, computer programs were developed to assist in the layout of the PCB. The layout artists traded their light tables for desktops with electronic design automation (EDA) tools.
Since the 1980s, the PCB layouts have become more complex. More so, it is very safe to say that the PCB is not going to go the way of the dinosaur. However, we have to recognize that the three economic downturns in the last 30 years have had a monumental impact on PCB layout artists. The first was in 1990, followed by the tech wreck in 2001 and the great recession of 2008. In each of the subsequent recoveries, the burden of PCB layout has been put on the shoulders of the electrical engineer. In fact, PCB layout is now a line item in a job position for a hardware engineer.
Surveys by Mentor confirm this. What they have found is that over 75% of those who call themselves layout artists are over the age of 45 (as of 2017). More importantly, other surveys indicate that 50% of them plan to retire within 10 years.
What does this mean?
- Those who are layout artists have had a tough row to hoe. They have survived 3 major downturns. They know that if they were passing their information to someone else, they are threatening their own existence. They have no incentive to teach a new generation.
- Academia still looks at the layout as a technician’s job. Therefore, they do not see the need to teach this skill to their engineering students. Academia is completely out of touch with the industry.
- No vocational program really exists to train individuals on PCB layout.
- As mentioned, PCB is not going away any time soon. It is vital medium for electronic design.
- Mechatronic design is going to lean heavily on the concepts that are currently use in PCB layout. Understanding the current methods used to design and fabricate a PCB will be necessary for mechatronic manufacturing methods.
As the title suggests, we in the PCB design space do not have someone to take ownership the layout. There is no effort in the industry to replace or recreate the position of layout artist. The electrical engineering community has not embraced it because most of the focus is on component development and embedded programming. They are still trained in theoretical concepts of circuit design. Few venture into the physical hardware.
In thinking outside the box, the PCB is just as mechanical as it is electrical. We at Nine Dot Connects have made it clear that mechatronic design is the simultaneous blending of both the mechanical and electrical. When we really look at the PCB, it just as much mechanical as it is electrical. In fact, it is bold to say that the PCB itself is truly a mechatronic design. When the layout artists are designing a PCB, they are considering both the electrical and mechanical aspects simultaneously.
Therefore, who’s to say that the PCB cannot be owned by the mechanical? In a blog post to come, we will explore the reasons why a mechanical engineer can own this space, a space that will only become more precious as time moves on.
Suggested Items
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
07/11/2025 | Andy Shaughnessy, Design007 MagazineThis week, we have quite a variety of news items and articles for you. News continues to stream out of Washington, D.C., with tariffs rearing their controversial head again. Because these tariffs are targeted at overseas copper manufacturers, this news has a direct effect on our industry.I-Connect007 Editor’s Choice: Five Must-Reads for the Week
Digital Twin Concept in Copper Electroplating Process Performance
07/11/2025 | Aga Franczak, Robrecht Belis, Elsyca N.V.PCB manufacturing involves transforming a design into a physical board while meeting specific requirements. Understanding these design specifications is crucial, as they directly impact the PCB's fabrication process, performance, and yield rate. One key design specification is copper thieving—the addition of “dummy” pads across the surface that are plated along with the features designed on the outer layers. The purpose of the process is to provide a uniform distribution of copper across the outer layers to make the plating current density and plating in the holes more uniform.
Trump Copper Tariffs Spark Concern
07/10/2025 | I-Connect007 Editorial TeamPresident Donald Trump stated on July 8 that he plans to impose a 50% tariff on copper imports, sparking concern in a global industry whose output is critical to electric vehicles, military hardware, semiconductors, and a wide range of consumer goods. According to Yahoo Finance, copper futures climbed over 2% following tariff confirmation.
Happy’s Tech Talk #40: Factors in PTH Reliability—Hole Voids
07/09/2025 | Happy Holden -- Column: Happy’s Tech TalkWhen we consider via reliability, the major contributing factors are typically processing deviations. These can be subtle and not always visible. One particularly insightful column was by Mike Carano, “Causes of Plating Voids, Pre-electroless Copper,” where he outlined some of the possible causes of hole defects for both plated through-hole (PTH) and blind vias.
Trouble in Your Tank: Can You Drill the Perfect Hole?
07/07/2025 | Michael Carano -- Column: Trouble in Your TankIn the movie “Friday Night Lights,” the head football coach (played by Billy Bob Thornton) addresses his high school football team on a hot day in August in West Texas. He asks his players one question: “Can you be perfect?” That is an interesting question, in football and the printed circuit board fabrication world, where being perfect is somewhat elusive. When it comes to mechanical drilling and via formation, can you drill the perfect hole time after time?