Thermal Gradients Shown to Enhance Spin Transport in Graphene
December 7, 2017 | ICN2Estimated reading time: 2 minutes

ICN2 researchers have demonstrated that the application of a thermal gradient in spintronic devices can cause spin signal to increase as a result of a novel thermoelectric phenomenon predicted and subsequently observed in graphene. Specifically, the enhanced spin signal is two orders of magnitude larger than anything previously reported for thermal effects in metals. Published in Nature Nanotechnology, these findings push at the frontier of graphene spintronics technologies.
Scientists of the ICN2 Physics and Engineering of Nanodevices Group, led by ICREA Prof. Sergio O. Valenzuela, have contributed to the literature on spin caloritronics with a focus on the effect of thermal gradients on spins in graphene. The paper titled “Thermoelectric spin voltage in graphene” was published this week in Nature Nanotechnology, with lead author Juan F. Sierra.
Spin caloritronics is an emerging field that studies the interaction of spin and heat currents in different materials, where spin is an intrinsic property of electrons which, like charge, can be used to store and transport information. Researchers are looking at different ways to generate spin currents and exploit them in a future generation of electronic devices. However, sustaining them over the kind of distances needed in practice is a challenge. Heat currents offer a possible solution.
In this paper ICN2 researchers turn their attention to graphene. Boasting a wealth of properties that make it uniquely able to transport spin efficiently over long distances, this material is already the focus of much attention in spintronics. And given that graphene is known to present large thermoelectric effects and extraordinarily long carrier cooling times, the application of heat currents promised interesting results. It did not disappoint.
Using a precise experimental setup, the researchers were able to independently control spin and heat currents in graphene. They observed that the presence of a thermal gradient significantly enhances the spin signal, and that it does so around the charge neutrality point. Overall, graphene’s baseline spin signal was increased by around thirty percent upon application of a heat current, giving a total signal two orders of magnitude greater than anything previously reported for thermal effects in metals.
Such a large thermoelectric spin signal is the combined consequence of graphene’s large Seebeck coefficient, which governs the scale of the thermoelectric response; the fact that this coefficient varies strongly with the Fermi level; and the presence of hot carriers. Indeed, it is these hot electrons that cause thermal gradients on a scale that allow observation of this thermoelectric effect on spin.
These results represent unprecedented advances in our understanding of spin caloritronics, holding promise for technological advances in the form of devices able to control and sustain spin currents over useful distances through the application of a heat current.
Suggested Items
MVTec, Siemens Expand Technological Cooperation
06/12/2025 | MVTecMVTec Software GmbH and Siemens are expanding their technological cooperation in the field of industrial automation. To reinforce their increasingly close collaboration, Siemens joined the MVTec Technology Partner Program in May 2025.
Nordson Electronics Solutions Develops Panel-level Packaging Solution for Powertech Technology, Inc. That Achieves Yields Greater Than 99% for Underfilling During Semiconductor Manufacturing
06/11/2025 | Nordson Electronics SolutionsNordson Electronics Solutions, a global leader in reliable electronics manufacturing technologies, has developed several solutions for panel-level packaging (PLP) during semiconductor manufacturing. In one particular case, Nordson’s customer, Powertech Technology, Inc. (PTI) saw underfill yields improve to greater than 99% as they plan to transition from wafers to panels in their manufacturing operations. edwd
ACCM Joins Polar’s Speedstack Material Partner Program
06/10/2025 | Polar InstrumentsAdvance Chip & Circuit Materials has recently joined the Polar Speedstack Material Partner Program to ease the inclusion of ACCM's innovative Celeritas build up materials into the PCB supply chain.
See TopLine’s Next Gen Braided Solder Column Technology at SPACE TECH EXPO 2025
05/28/2025 | TopLineAerospace and Defense applications in demanding environments have a solution now in TopLine’s Braided Solder Columns, which can withstand the rigors of deep space cold and cryogenic environments.
Micro LED Expands Beyond Displays, Unlocking New Opportunities in Transparent and Non-Display Applications
05/30/2025 | TrendForceTrendForce forecasts that the chip market value for Micro LED display applications will reach US$740 million by 2029, with a CAGR of 93% from 2024 to 2029.