New Silicon Structure Opens the Gate to Quantum Computers
December 12, 2017 | Princeton UniversityEstimated reading time: 5 minutes
The researchers demonstrated that they can use the first qubit to control the second qubit, signifying that the structure functioned as a controlled NOT (CNOT) gate, which is the quantum version of a commonly used computer circuit component. The researchers control the behavior of the first qubit by applying a magnetic field. The gate produces a result based on the state of the first qubit: If the first spin is pointed up, then the second qubit’s spin will flip, but if the first spin is down, the second one will not flip.
“The gate is basically saying it is only going to do something to one particle if the other particle is in a certain configuration,” Petta said. “What happens to one particle depends on the other particle.”
The researchers showed that they can maintain the electron spins in their quantum states with a fidelity exceeding 99 percent and that the gate works reliably to flip the spin of the second qubit about 75 percent of the time. The technology has the potential to scale to more qubits with even lower error rates, according to the researchers.
“This work stands out in a worldwide race to demonstrate the CNOT gate, a fundamental building block for quantum computation, in silicon-based qubits,” said HongWen Jiang, a professor of physics and astronomy at the University of California-Los Angeles. “The error rate for the two-qubit operation is unambiguously benchmarked. It is particularly impressive that this extraordinarily difficult experiment, which requires a sophisticated device fabrication and an exquisite control of quantum states, is done in a university lab consisting of only a few researchers.”
Additional researchers at Princeton are graduate student Felix Borjans and associate research scholar Anthony Sigillito. The team included input on the theory aspects of the work by Jacob Taylor, a professor at the Joint Quantum Institute and Joint Center for Quantum Information and Computer Science at the National Institute of Standards and Technology and the University of Maryland, and Maximilian Russ and Guido Burkard at the University of Konstanz in Germany.
Research was sponsored by U.S. Army Research Office grant W911NF-15-1-0149, the Gordon and Betty Moore Foundation’s EPiQS Initiative through grant GBMF4535, and National Science Foundation grant DMR-1409556. Devices were fabricated in the Princeton University Quantum Device Nanofabrication Laboratory.
The study, “Resonantly driven CNOT gate for electron spins,” by David M. Zajac, Anthony J. Sigillito, Maximilian Russ, Felix Borjans, Jacob M. Taylor, Guido Burkard and Jason R. Petta was published online in the journal Science on Dec. 7, 2017.
Page 2 of 2Suggested Items
Infineon Gains Approval of Science Based Targets Initiative for Ambitious CO2 Emission Reduction Targets
05/20/2025 | InfineonInfineon Technologies AG has reached another milestone in its decarbonization efforts: The Science Based Targets initiative (SBTi) has approved the company's ambitious greenhouse gas emission reduction targets.
NY CREATES, Fraunhofer Institutes Announce Joint Development Agreement to Advance Memory Devices at the 300mm Wafer Scale
05/16/2025 | NY CREATESNY CREATES and Fraunhofer IPMS announced at a signing ceremony a new Joint Development Agreement (JDA) to drive research and development focused on memory devices.
Kitron Signs €7 Million Annual Manufacturing Agreement for Advanced Sensor Technology
05/09/2025 | KitronKitron has entered into a multi-year agreement with a U.S.-based customer to manufacture advanced sensor-based products intended for the European market.
India-based Tech Vendors Must Prioritize Localization and Strategic Partnerships to Succeed in the Indian Market
04/28/2025 | IDCIndia’s technology market is evolving rapidly, and local tech vendors must prioritize AI investments, forge strategic vendor alliances, and navigate increasing regulatory challenges to seize new growth opportunities, according to the report, IDC Playbook Tech Sales Leaders - An India Technology Market Expansion Sales Playbook for India-Based Vendors.
QpiAI Announces Dawn of Quantum Era in India With 25 Qubit Quantum Computer
04/16/2025 | BUSINESS WIREQpiAI, a leader in quantum computing and generative AI, announced its First Quantum computer launch code named QpiAI Indus Quantum Computer.