-
-
News
News Highlights
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueTechnical Resources
Key industry organizations–all with knowledge sharing as a part of their mission–share their technical repositories in this issue of SMT007 Magazine. Where can you find information critical to your work? Odds are, right here.
The Path Ahead
What are you paying the most attention to as we enter 2025? Find out what we learned when we asked that question. Join us as we explore five main themes in the new year.
Soldering Technologies
Soldering is the heartbeat of assembly, and new developments are taking place to match the rest of the innovation in electronics. There are tried-and-true technologies for soldering. But new challenges in packaging, materials, and sustainability may be putting this key step in flux.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
The Coldest Chip in the World
December 20, 2017 | University of BaselEstimated reading time: 2 minutes
Physicists at the University of Basel have succeeded in cooling a nanoelectronic chip to a temperature lower than 3 millikelvin. The scientists from the Department of Physics and the Swiss Nanoscience Institute set this record in collaboration with colleagues from Germany and Finland. They used magnetic cooling to cool the electrical connections as well as the chip itself. The results were published in the journal Applied Physics Letters ("On-and-off chip cooling of a Coulomb blockade thermometer down to 2.8 mK").
Even scientists like to compete for records, which is why numerous working groups worldwide are using high-tech refrigerators to reach temperatures as close to absolute zero as possible. Absolute zero is 0 kelvin or -273.15°C. Physicists aim to cool their equipment to as close to absolute zero as possible, because these extremely low temperatures offer the ideal conditions for quantum experiments and allow entirely new physical phenomena to be examined.
Cooling by turning off a magnetic field
The group led by Basel physicist Professor Dominik Zumbühl had previously suggested utilizing the principle of magnetic cooling in nanoelectronics in order to cool nanoelectronic devices to unprecedented temperatures close to absolute zero. Magnetic cooling is based on the fact that a system can cool down when an applied magnetic field is ramped down while any external heat flow is avoided. Before ramping down, the heat of magnetization needs to be removed with another method to obtain efficient magnetic cooling.
A successful combination
This is how Zumbühl’s team succeeded in cooling a nanoelectronic chip to a temperature below 2.8 millikelvin, thereby achieving a new low temperature record. Dr Mario Palma, lead author of the study, and his colleague Christian Scheller successfully used a combination of two cooling systems, both of which were based on magnetic cooling. They cooled all of the chip’s electrical connections to temperatures of 150 microkelvin – a temperature that is less than a thousandth of a degree away from absolute zero.
They then integrated a second cooling system directly into the chip itself, and also placed a Coulomb blockade thermometer on it. The construction and the material composition enabled them to magnetically cool this thermometer to a temperature almost as low as absolute zero as well.
“The combination of cooling systems allowed us to cool our chip down to below 3 millikelvin, and we are optimistic than we can use the same method to reach the magic 1 millikelvin limit,” says Zumbühl. It is also remarkable that the scientists are in a position to maintain these extremely low temperatures for a period of seven hours. This provides enough time to conduct various experiments that will help to understand the properties of physics close to absolute zero.
Suggested Items
Swissbit Unveils PCIe Gen4 SSD A1200
02/04/2025 | SwissbitSwissbit introduces the latest addition to its PCIe portfolio, the new A1200. The PCIe Gen4 M.2 SSD is designed to meet the demands of high-performance, mission-critical applications, focusing on consistent performance, low latency, and data integrity.
AIM Solder to Declare 2025 the Year of Type 5 at IPC APEX EXPO 2025
02/03/2025 | AIM SolderAIM Solder, a leading global manufacturer of solder assembly materials for the electronics industry, is proud to announce its participation in the upcoming IPC APEX Conference and Expo, held at the Anaheim Convention Center in California from March 18-20, 2025.
Indium to Showcase Durafuse Solder Technology at NEPCON Japan
01/21/2025 | Indium CorporationAs one of the leading materials providers in the electronics assembly industry, Indium Corporation® is looking forward to featuring its innovative Durafuse® solder technology at NEPCON Japan, taking place January 22-24, in Tokyo, Japan.
Indium Expert to Present on Solder Solutions for AI and Automotive Applications at NEPCON Japan 2025
01/16/2025 | Indium CorporationIndium Corporation Senior Area Technical Manager Jason Chou will deliver a technical presentation at NEPCON Japan, on January 22-24, in Tokyo, Japan.
SMTA Ontario Presents Webinar on Achieving Enhanced Reliability with a Novel Lead-Free, Bismuth-Free, Low-Temperature Solder
01/09/2025 | SMTAThe Ontario Chapter of the Surface Mount Technology Association (SMTA) invites electronics industry professionals to a technical webinar featuring Emily Belfield, Regional Sales Manager at Indium Corporation.