New Study Visualizes Motion of Water Molecules, Promises New Wave of Electronic Devices
December 26, 2017 | DOE/Oak Ridge National LaboratoryEstimated reading time: 2 minutes

A novel approach to studying the viscosity of water has revealed new insights about the behavior of water molecules and may open pathways for liquid-based electronics.
A team of researchers led by the Department of Energy's Oak Ridge National Laboratory used a high-resolution inelastic X-ray scattering technique to measure the strong bond involving a hydrogen atom sandwiched between two oxygen atoms. This hydrogen bond is a quantum-mechanical phenomenon responsible for various properties of water, including viscosity, which determines a liquid's resistance to flow or to change shape.
While water is the most abundant substance on Earth, its behavior at a molecular level is not well understood.
"Despite all what we know about water, it is a mysterious, atypical substance that we need to better understand to unlock its vast potential, particularly in information and energy technologies," said Takeshi Egami, University of Tennessee-ORNL Distinguished Scientist/Professor working through the Shull Wollan Center--a Joint Institute for Neutron Sciences, an ORNL-UT partnership.
The team's study, published in Science Advances, demonstrated that it is possible to probe real-space, real-time dynamics of water and other liquids. Previous studies have provided snapshots of water's atomic structure, but little is known about how water molecules move.
"The hydrogen bond has a strong effect on the dynamic correlation between molecules as they move through space and time, but so far the data, mostly by optical laser spectroscopy, yielded broad or 'hazy' results with unclear specificity," Egami said.
For a clearer picture, the joint ORNL-UT team used an advanced X-ray technique known as inelastic X-ray scattering to determine molecular movement. They found that the dynamics of oxygen-to-oxygen bonding between water molecules is, surprisingly, not random but highly coordinated. When the bond between water molecules is disrupted, the strong hydrogen bonds work to maintain a stable environment over a specific period of time.
"We found that the amount of time it takes for a molecule to change its 'neighbor' molecule determines the water's viscosity," Egami said. This new discovery would stimulate further studies on exerting control over the viscosity of other liquids.
Egami views the current work as a springboard to more advanced research that will leverage neutron scattering techniques at the Spallation Neutron Source at ORNL, a DOE Office of Science User Facility, to further determine the origin of viscosity and other dynamic properties of liquids.
The researchers' approach could also be used to characterize the molecular behavior and viscosity of ionic, or salty, liquids and other liquid substances, which would aid in the development of new types of semiconductor devices with liquid electrolyte insulating layers, better batteries and improved lubricants.
Suggested Items
Schweizer Electronic Publishes Group Figures for 2024 and Provides Outlook for 2025
05/01/2025 | Schweizer Electronic AGSCHWEIZER achieved a turnover of EUR 144.5 million in the 2024 financial year (previous year: EUR 139.4 million), the highest consolidated turnover in the company's history.
Benchmark Reports Revenue of $632 Million in 1Q 2025 Results
04/30/2025 | BUSINESS WIREBenchmark Electronics, Inc. announced financial results for the first quarter ended March 31, 2025.
Mitsubishi Electric, Nanofiber Quantum Technologies Launch Trial to Develop Quantum Computer Interconnection Technology
04/25/2025 | BUSINESS WIREMitsubishi Electric Corporation and Nanofiber Quantum Technologies Inc. (NanoQT) announced today the immediate launch of a joint demonstration aimed at establishing interconnection technologies for neutral-atom quantum computers.
Designers Notebook: Layer Stackup Planning for RF Circuit Boards
04/17/2025 | Vern Solberg -- Column: Designer's NotebookWhen designing multiple layer circuits requiring impedance control, the circuit board designer will work closely with an engineering specialist cognizant of RF printed circuit board design and layout, including mixed-signal applications.
The Key to First-pass Success in PCB Design
04/10/2025 | Gerry Partida, Summit InterconnectIn the dynamic world of PCB manufacturing, achieving first-pass success hinges on more than just cutting-edge equipment and skilled teams. At Summit Interconnect, we have seen countless successful launches of advanced HDI designs that can be traced directly to engagement between designers and fabricators early in the design phase. Unfortunately, collaboration in the PCB industry often begins only after problems arise—such as field failures, assembly fallout, or low fabrication yields. This reactive approach is the wrong starting point for collaboration.