Inkjet-Printed Thermite Deposits Energetic Materials Safely
January 9, 2018 | Purdue UniversityEstimated reading time: 2 minutes
Researchers have developed a method to deposit tiny amounts of energetic materials (explosives, propellants, and pyrotechnics) using the same technology as an inkjet printer.
This research, which combines Purdue expertise in both energetic materials and additive manufacturing, allows energetic materials to be deposited with unprecedented levels of precision and safety.
“Energetic materials is a fairly understood field, and so is additive manufacturing,” said Allison Murray, a doctoral candidate in Purdue’s School of Mechanical Engineering, who built the custom inkjet printer. “What’s unique about this project is the intersection of those two fields and being able to safely deposit energetic materials with this level of precision.”
Many micromechanical systems incorporate energetic materials in their operation. For example, an automotive airbag deploys using a small amount of solid propellant. But as devices get smaller, the need for micro-level energetics becomes more critical.
“Our solution is to combine two components as we’re printing them,” said Jeff Rhoads, professor of mechanical engineering, and principal investigator on the project. “We can have a fuel and an oxidizer in two separate suspensions, which are largely inert. Then, with this custom inkjet printer, we can deposit the two in a specific overlapping pattern, combining them on a substrate to form nanothermite.”
“We’re talking about picoliters of material,” Murray said. “It was a challenge to get the right droplet volume and the right pattern.”
The other challenge: designing a machine that could deposit these droplets accurately. Murray’s machine holds the nozzle stationary and moves a stage below it to form whatever shape is required. “The stage can move with a 0.1 micron precision, which is basically a thousandth the width of a human hair,” she said.
The resulting nanothermite reacts just as quickly and powerfully as thermites applied in traditional ways.
“It burns at 2,500 Kelvin [over 4,000 degrees Fahrenheit],” Murray said. “It generates a lot of thrust, a lot of heat, and makes a nice loud shockwave.”
The project, which has been published in the Journal of Applied Physics, has a team of 10 researchers and four faculty members from varying disciplines in mechanical engineering. Rhoads studies micro-electromechanical systems; George Chiu is an expert in inkjet printing; and Emre Gunduz and Steve Son work at Zucrow Labs, studying energetic materials like explosives, propellants, and pyrotechnics.
“It’s a defining feature of Purdue that professors from such different backgrounds can work together on a project like this,” Rhoads said. “We can combine all of our experiences to collaborate on technologies that weren’t previously realizable.”
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
SEMI Foundation Honors Applied Materials at SEMICON West with 2025 Excellence in Achievement Award for Talent Development
11/04/2025 | SEMIThe SEMI Foundation announced it recognized Applied Materials, Inc. with the Excellence in Achievement Award at SEMICON West 2025 in Phoenix, Arizona, honoring the company’s outstanding leadership and collaboration in building the next generation of semiconductor talent.
Sealed for Survival: Potting Electronics for the Toughest Environments
10/29/2025 | Beth Massey, MacDermid Alpha Electronics SolutionsElectronics deployed in harsh conditions face relentless threats from vibration, impact, chemical contaminants, airborne pollutants, and moisture, conditions that can quickly lead to failure without robust protection. Potting, the process of encapsulating electronics in a protective polymer, is a widely used strategy to safeguard devices from both environmental and mechanical hazards.
Driving Innovation: Mechanical and Optical Processes During Rigid-flex Production
10/28/2025 | Kurt Palmer -- Column: Driving InnovationRigid-flex printed circuit boards are a highly effective solution for placing complex circuitry in tight, three-dimensional spaces. They are now indispensable across a range of industries, from medical devices and aerospace to advanced consumer electronics, helping designers make the most efficient use of available space. However, their unique construction—combining rigid and flexible materials—presents a fundamental challenge for PCB manufacturers.
SMTAI 2025 Review: Reflecting on a Pragmatic and Forward-looking Industry
10/27/2025 | Marcy LaRont, I-Connect007Leaving the show floor on the final afternoon of SMTA International last week in Rosemont, Illinois, it was clear that the show remains a grounded, technically driven event that delivers a solid program, good networking, and an easy space to commune with industry colleagues and meet with customers.
ITW EAE Despatch Ovens Now Support ASTM 5423 Testing
10/15/2025 | ITW EAEAs the demand for high-performance electrical insulation materials continues to grow—driven by the rapid expansion of electric vehicles (EVs) and energy storage systems—thermal processing has become a critical step in material development.