Researchers Measure Single Atoms in a Graphene ‘Petri-Dish’
January 16, 2018 | University of ManchesterEstimated reading time: 2 minutes

Researchers working at The University of Manchester have shown new possibilities for observing nanomaterials in liquids by creating a graphene ‘petri-dish’.
New 2-dimensional nanomaterials have the potential to improve efficiencies, reduce costs and provide enhanced performance in a broad range of applications including; better design of nanomaterials for batteries or understanding the degradation of battery materials in order to improve their performance.
The unique properties exhibited by 2D materials could also lead to functional and antibacterial coatings, bioanalysis, and targeted drug delivery. However, the difficulty of controlling growth and degradation at the atomic scale is currently a hurdle to fully exploiting the potential of these exciting materials.
Scanning/transmission electron microscopy (S/TEM) is one of only few techniques that allows imaging and analysis of individual atoms. However, the S/TEM instrument requires a high vacuum to protect the electron source and to prevent electron scattering from molecular interactions.
Several high profile studies have previously revealed that the structure of functional materials at room temperature in a vacuum can significantly different from that in their normal liquid environment. This could be like trying to study the structure of a dehydrated prune to understand the structure of the original plum.
Publishing in Nano Letters, a research team led by Dr Sarah Haigh and Dr Roman Gorbachev at the National Graphene Institute and the School of Materials at The University of Manchester have shown that graphene and boron nitride can be combined to create a perfect nano petri-dish. Liquid samples inside the dish can be imaged with single atom sensitivity and it is also possible to measure their elemental composition at the nanometre length scale.
These engineered graphene liquid cells (EGLC) are built from 2D material-building blocks: they consist of a boron nitride (BN) spacer drilled with holes (where the liquid is contained) and encapsulated with graphene on both sides.
Graphene is the ultimate window material - strong enough to protect the sample from a high vacuum environment, but at the same time thin enough that the resolution of the electron beam is not compromised. Lead author Daniel Kelly said: “Unlike some previous designs our graphene liquid cells allow us to image the atoms for many minutes. We were even able to resolve individual atoms in water and observe them dancing under the electron beam.”
The researchers also demonstrated that these new graphene liquid cells enable an order of magnitude improvement in the quality of elemental analysis in liquid cells. They studied the deposition of a 1nm shell of iron on gold to grow core-shell nanoparticles. This new ability to monitor tiny concentrations over such small length-scales is a necessity for the increasingly complex chemical structures of high-performing nanocatalysts.
Mingwei Zhou, the student making these cells, said: “We are getting to understand how to make these more and more reliably, this makes the 2D petri-dish a promising route to further in situ TEM advancements, including imaging of small biological structures such as proteins.”
Suggested Items
Electroninks Acquires Complete UTDots Advanced Materials Nanoinks Portfolio and IP
05/19/2025 | ElectroninksElectroninks, the leader in metal organic decomposition (MOD) inks for additive manufacturing and advanced semiconductor packaging, announced it has officially completed its full acquisition of UTDots products and IP into its portfolio, further expanding its offerings in digital printing for high-performance applications.
Future-proofing Electronics: ChemFORWARD Works Toward Collaboration for Safer Chemistry
05/19/2025 | Rachel Simon, ChemFORWARDThe electronics industry is facing a critical juncture. As consumer demand for sustainable products rises and regulatory pressures intensify, companies must prioritize the safety of their products and processes. This means not only complying with evolving chemical restrictions but also proactively seeking safer alternatives.
From DuPont to Qnity: A Bold Move in Electronics Materials
05/14/2025 | Marcy LaRont, I-Connect007DuPont has announced the intended spinoff of a public independent electronics company, Qnity, which will serve as a solutions provider to the semiconductor and electronics industries to enhance competitiveness and innovation in advanced computing, smart technologies, and connectivity. In this interview, Jon Kemp, Qnity CEO-elect and current president of DuPont’s Electronics business, shares his insights on the strategic separation from DuPont.
SMC Korea 2025 to Spotlight Next-Generation Memory and Materials Innovation amid AI Boom
05/13/2025 | SEMIThe Strategic Materials Conference (SMC) Korea 2025 is set to convene on May 14 at the Suwon Convention Center in Gyeonggi-do, South Korea, bringing together leading experts and innovators to highlight the critical role of materials innovation in addressing the performance, efficiency, and scalability requirements of AI-enabled semiconductor devices.
SEMI Applauds New Bill to Clarify Tax Credit Eligibility for Critical Semiconductor Suppliers Under U.S. CHIPS Act
05/12/2025 | SEMISEMI, the industry association serving the global semiconductor and electronics design and manufacturing supply chain, announced support of the Strengthening Essential Manufacturing and Industrial Investment Act (SEMI Investment Act), which clarifies that critical materials suppliers to semiconductor manufacturers are eligible for the Advanced Manufacturing Investment Tax Credit (“Section 48D”) created by the United States CHIPS and Science Act.