Advances Open New Frequency Range for Wireless Communications
February 8, 2018 | AIP.orgEstimated reading time: 2 minutes
The world is running out of bandwidth to support our growing communication demands. This is in part due to “internet of things” technologies which make everything from your toaster to your front door accessible online, and have driven an explosion in data traffic. A new range of frequencies in the terahertz (THz) region of the spectrum may soon be available for use. A paper appearing this week in APL Photonics, from AIP Publishing, demonstrates the feasibility of using THz carrier waves for data transmission in diverse situations and environments, including non-line-of-sight applications where waves bounce off, or are reflected by, walls and other objects.
Daniel Mittleman of Brown University, whose group led the study, said, “We’re not the first group to study the feasibility of THz wireless links, either indoors or outdoors, but there have been few comprehensive studies.” Many researchers in the field have believed that links that rely on indirect, or non-line-of-sight pathways, are impossible. “Our work shows that this isn’t necessarily the case,” he said.
THz radiation has frequencies higher than 95 gigahertz (GHz), beyond which the US Federal Communications Commission (FCC) has yet to establish service rules. Bandwidth in this region of the spectrum could be available for use in future wireless technologies, but little is known about power requirements, architectures, hardware or other basic issues for such data carrier waves.
THz radiation is about 100 times higher in frequency and, thus, higher in photon energy than typical wireless carrier waves like Bluetooth or standard Wi-Fi are. Some have expressed concern about the safety of this type of radiation, but because these waves are not likely to penetrate deeply into tissue, particularly at the powers used in wireless applications, most believe safety will not be an issue.
Mittleman’s group measured data transmission at 100, 200, 300 and 400 GHz using a link with a data transfer rate of 1 gigabit per second in a variety of real-life environments. They set up a THz transmitter that used a frequency multiplier chain to up-convert a modulated base signal to the desired frequency. They also placed a receiver downstream, around various indoor and outdoor obstacles, to detect the pulsed signal. Outdoor measurements were enabled by an experimental license granted by the FCC.
(Left) A schematic of a directional terahertz wireless link that incorporates two bounces off of walls, so that there is no line-of-sight path from the transmitter to the receiver. The inset shows the bit error rate (BER) on a log scale, as a function of the output power of the transmitter. At both 100 GHz and 200 GHz, essentially error free transmission (BER = 10^-9) can be achieved.
(Right) a close-up photo of the transmitter rig used in these measurements, which include a horn antenna and a Teflon lens to increase the gain of the system. CREDIT: Daniel Mittleman
When the THz signal was pointed directly at the receiver, it produced a line-of-sight measurement. Alternatively, the signal could also be forced to reflect from, or bounce off, objects before detection. These non-line-of-sight experiments used real-life objects, including a painted cinder block, a door, metal foil, and a smooth metal plate, to reflect the signal.
In a key experiment, the signal source and receiver were placed where they could not see each other. The signal was bounced off an intervening wall twice and easily detected by the receiver. This study demonstrated that, contrary to prior expectations, non-line-of-sight use is possible for this type of carrier wave, and that THz radiation may play a role in future wireless technologies.
Suggested Items
AI Boom Drives Surge in Data Center Interconnect Demand; Global Market Value to Grow 14.3% in 2025
05/19/2025 | TrendForceTrendForce reports that leading global telecom providers such as SK Telecom and Deutsche Telekom are rolling out Agentic AI services for general users as generative AI becomes increasingly integrated into daily life in 2025.
FTG Achieves Major Milestone with TCCA Certification for Edge+ on Boeing 737NG Family
05/16/2025 | Globe NewswireFiran Technology Group Corporation (FTG) announced that its FLYHT subsidiary has been awarded a Supplemental Type Certificate (STC) by Transport Canada Civil Aviation (TCCA) for the AFIRS Edge+™ product on the Boeing 737NG family of aircraft.
Future-proofing Electronics: ChemFORWARD Works Toward Collaboration for Safer Chemistry
05/19/2025 | Rachel Simon, ChemFORWARDThe electronics industry is facing a critical juncture. As consumer demand for sustainable products rises and regulatory pressures intensify, companies must prioritize the safety of their products and processes. This means not only complying with evolving chemical restrictions but also proactively seeking safer alternatives.
Corning Collaborates with Broadcom to Accelerate AI Data Center Processing Capacity
05/14/2025 | BUSINESS WIRECorning Incorporated, a world leader in glass science and optical physics, today announced a collaboration with Broadcom Incorporated, a leading supplier in the semiconductor field, on a co-packaged optics (CPO) infrastructure that will significantly increase processing capacity within data centers.
Breaking Down Barriers: The Connectivity of Machines in SMT Production Lines
05/14/2025 | Bill Cardoso, Creative ElectronAs the world increasingly moves toward erecting trade barriers, we find ourselves in a paradox. Across the globe, the rise in tariffs and protectionist policies is creating a more fragmented global economy, with nations seeking to insulate themselves from external economic pressures. However, within the confines of the SMT production line, the trend is moving in precisely the opposite direction—toward greater connectivity, integration, and collaboration. Rather than isolating one machine from another, SMT production lines are increasingly interconnected, with data being shared across various stages of the process to improve quality, efficiency, and defect detection.