Neural Networks Everywhere
February 14, 2018 | MITEstimated reading time: 8 minutes

Most recent advances in artificial-intelligence systems such as speech- or face-recognition programs have come courtesy of neural networks, densely interconnected meshes of simple information processors that learn to perform tasks by analyzing huge sets of training data.
But neural nets are large, and their computations are energy intensive, so they’re not very practical for handheld devices. Most smartphone apps that rely on neural nets simply upload data to internet servers, which process it and send the results back to the phone.
Now, MIT researchers have developed a special-purpose chip that increases the speed of neural-network computations by three to seven times over its predecessors, while reducing power consumption 94 to 95 percent. That could make it practical to run neural networks locally on smartphones or even to embed them in household appliances.
“The general processor model is that there is a memory in some part of the chip, and there is a processor in another part of the chip, and you move the data back and forth between them when you do these computations,” says Avishek Biswas, an MIT graduate student in electrical engineering and computer science, who led the new chip’s development.
“Since these machine-learning algorithms need so many computations, this transferring back and forth of data is the dominant portion of the energy consumption. But the computation these algorithms do can be simplified to one specific operation, called the dot product. Our approach was, can we implement this dot-product functionality inside the memory so that you don’t need to transfer this data back and forth?”
Biswas and his thesis advisor, Anantha Chandrakasan, dean of MIT’s School of Engineering and the Vannevar Bush Professor of Electrical Engineering and Computer Science, describe the new chip in a paper that Biswas is presenting this week at the International Solid State Circuits Conference.
Back to Analog
Neural networks are typically arranged into layers. A single processing node in one layer of the network will generally receive data from several nodes in the layer below and pass data to several nodes in the layer above. Each connection between nodes has its own “weight,” which indicates how large a role the output of one node will play in the computation performed by the next. Training the network is a matter of setting those weights.
A node receiving data from multiple nodes in the layer below will multiply each input by the weight of the corresponding connection and sum the results. That operation — the summation of multiplications — is the definition of a dot product. If the dot product exceeds some threshold value, the node will transmit it to nodes in the next layer, over connections with their own weights.
A neural net is an abstraction: The “nodes” are just weights stored in a computer’s memory. Calculating a dot product usually involves fetching a weight from memory, fetching the associated data item, multiplying the two, storing the result somewhere, and then repeating the operation for every input to a node. Given that a neural net will have thousands or even millions of nodes, that’s a lot of data to move around.
But that sequence of operations is just a digital approximation of what happens in the brain, where signals traveling along multiple neurons meet at a “synapse,” or a gap between bundles of neurons. The neurons’ firing rates and the electrochemical signals that cross the synapse correspond to the data values and weights. The MIT researchers’ new chip improves efficiency by replicating the brain more faithfully.
In the chip, a node’s input values are converted into electrical voltages and then multiplied by the appropriate weights. Only the combined voltages are converted back into a digital representation and stored for further processing.
The chip can thus calculate dot products for multiple nodes — 16 at a time, in the prototype — in a single step, instead of shuttling between a processor and memory for every computation.
All or Nothing
One of the keys to the system is that all the weights are either 1 or -1. That means that they can be implemented within the memory itself as simple switches that either close a circuit or leave it open. Recent theoretical work suggests that neural nets trained with only two weights should lose little accuracy — somewhere between 1 and 2 percent.
Biswas and Chandrakasan’s research bears that prediction out. In experiments, they ran the full implementation of a neural network on a conventional computer and the binary-weight equivalent on their chip. Their chip’s results were generally within 2 to 3 percent of the conventional network’s.
"This is a promising real-world demonstration of SRAM-based in-memory analog computing for deep-learning applications,” says Dario Gil, vice president of artificial intelligence at IBM. "The results show impressive specifications for the energy-efficient implementation of convolution operations with memory arrays. It certainly will open the possibility to employ more complex convolutional neural networks for image and video classifications in IoT [the internet of things] in the future."
Most recent advances in artificial-intelligence systems such as speech- or face-recognition programs have come courtesy of neural networks, densely interconnected meshes of simple information processors that learn to perform tasks by analyzing huge sets of training data.
But neural nets are large, and their computations are energy intensive, so they’re not very practical for handheld devices. Most smartphone apps that rely on neural nets simply upload data to internet servers, which process it and send the results back to the phone.
Now, MIT researchers have developed a special-purpose chip that increases the speed of neural-network computations by three to seven times over its predecessors, while reducing power consumption 94 to 95 percent. That could make it practical to run neural networks locally on smartphones or even to embed them in household appliances.
“The general processor model is that there is a memory in some part of the chip, and there is a processor in another part of the chip, and you move the data back and forth between them when you do these computations,” says Avishek Biswas, an MIT graduate student in electrical engineering and computer science, who led the new chip’s development.
“Since these machine-learning algorithms need so many computations, this transferring back and forth of data is the dominant portion of the energy consumption. But the computation these algorithms do can be simplified to one specific operation, called the dot product. Our approach was, can we implement this dot-product functionality inside the memory so that you don’t need to transfer this data back and forth?”
Biswas and his thesis advisor, Anantha Chandrakasan, dean of MIT’s School of Engineering and the Vannevar Bush Professor of Electrical Engineering and Computer Science, describe the new chip in a paper that Biswas is presenting this week at the International Solid State Circuits Conference.
Back to analog
Neural networks are typically arranged into layers. A single processing node in one layer of the network will generally receive data from several nodes in the layer below and pass data to several nodes in the layer above. Each connection between nodes has its own “weight,” which indicates how large a role the output of one node will play in the computation performed by the next. Training the network is a matter of setting those weights.
A node receiving data from multiple nodes in the layer below will multiply each input by the weight of the corresponding connection and sum the results. That operation — the summation of multiplications — is the definition of a dot product. If the dot product exceeds some threshold value, the node will transmit it to nodes in the next layer, over connections with their own weights.
A neural net is an abstraction: The “nodes” are just weights stored in a computer’s memory. Calculating a dot product usually involves fetching a weight from memory, fetching the associated data item, multiplying the two, storing the result somewhere, and then repeating the operation for every input to a node. Given that a neural net will have thousands or even millions of nodes, that’s a lot of data to move around.
But that sequence of operations is just a digital approximation of what happens in the brain, where signals traveling along multiple neurons meet at a “synapse,” or a gap between bundles of neurons. The neurons’ firing rates and the electrochemical signals that cross the synapse correspond to the data values and weights. The MIT researchers’ new chip improves efficiency by replicating the brain more faithfully.
In the chip, a node’s input values are converted into electrical voltages and then multiplied by the appropriate weights. Only the combined voltages are converted back into a digital representation and stored for further processing.
The chip can thus calculate dot products for multiple nodes — 16 at a time, in the prototype — in a single step, instead of shuttling between a processor and memory for every computation.
All or nothing
One of the keys to the system is that all the weights are either 1 or -1. That means that they can be implemented within the memory itself as simple switches that either close a circuit or leave it open. Recent theoretical work suggests that neural nets trained with only two weights should lose little accuracy — somewhere between 1 and 2 percent.
Biswas and Chandrakasan’s research bears that prediction out. In experiments, they ran the full implementation of a neural network on a conventional computer and the binary-weight equivalent on their chip. Their chip’s results were generally within 2 to 3 percent of the conventional network’s.
"This is a promising real-world demonstration of SRAM-based in-memory analog computing for deep-learning applications,” says Dario Gil, vice president of artificial intelligence at IBM. "The results show impressive specifications for the energy-efficient implementation of convolution operations with memory arrays. It certainly will open the possibility to employ more complex convolutional neural networks for image and video classifications in IoT [the internet of things] in the future."
Suggested Items
AI Boom Drives Surge in Data Center Interconnect Demand; Global Market Value to Grow 14.3% in 2025
05/19/2025 | TrendForceTrendForce reports that leading global telecom providers such as SK Telecom and Deutsche Telekom are rolling out Agentic AI services for general users as generative AI becomes increasingly integrated into daily life in 2025.
FTG Achieves Major Milestone with TCCA Certification for Edge+ on Boeing 737NG Family
05/16/2025 | Globe NewswireFiran Technology Group Corporation (FTG) announced that its FLYHT subsidiary has been awarded a Supplemental Type Certificate (STC) by Transport Canada Civil Aviation (TCCA) for the AFIRS Edge+™ product on the Boeing 737NG family of aircraft.
Future-proofing Electronics: ChemFORWARD Works Toward Collaboration for Safer Chemistry
05/19/2025 | Rachel Simon, ChemFORWARDThe electronics industry is facing a critical juncture. As consumer demand for sustainable products rises and regulatory pressures intensify, companies must prioritize the safety of their products and processes. This means not only complying with evolving chemical restrictions but also proactively seeking safer alternatives.
Corning Collaborates with Broadcom to Accelerate AI Data Center Processing Capacity
05/14/2025 | BUSINESS WIRECorning Incorporated, a world leader in glass science and optical physics, today announced a collaboration with Broadcom Incorporated, a leading supplier in the semiconductor field, on a co-packaged optics (CPO) infrastructure that will significantly increase processing capacity within data centers.
Breaking Down Barriers: The Connectivity of Machines in SMT Production Lines
05/14/2025 | Bill Cardoso, Creative ElectronAs the world increasingly moves toward erecting trade barriers, we find ourselves in a paradox. Across the globe, the rise in tariffs and protectionist policies is creating a more fragmented global economy, with nations seeking to insulate themselves from external economic pressures. However, within the confines of the SMT production line, the trend is moving in precisely the opposite direction—toward greater connectivity, integration, and collaboration. Rather than isolating one machine from another, SMT production lines are increasingly interconnected, with data being shared across various stages of the process to improve quality, efficiency, and defect detection.