Mass Production of New Class of Semiconductors Closer to Reality
February 14, 2018 | University of WaterlooEstimated reading time: 2 minutes
Two Waterloo chemists have made it easier for manufacturers to produce a new class of faster and cheaper semiconductors.
The chemists have found a way to simultaneously control the orientation and select the size of single-walled carbon nanotubes deposited on a surface. That means the developers of semiconductors can use carbon as opposed to silicon, which will reduce the size and increase the speed of the devices while improving their battery life.
"We're reaching the limits of what's physically possible with silicon-based devices," said co-author Derek Schipper, Canada Research Chair Organic Material Synthesis at the University of Waterloo. "Not only would single-walled carbon nanotube-based electronics be more powerful, they would also consume less power."
The process, called the Alignment Relay Technique, relies on liquid crystals to pass orientation information to a metal-oxide surface. Small molecules called iptycenes then bond to the surface locking the orientation pattern into place. Their structure includes a small pocket large enough to fit a certain size carbon nanotube that remains after washing.
"This is the first time chemists have been able to externally control the orientation of small molecules covalently bonded to a surface," said Schipper, a professor of chemistry and a member of the Waterloo Institute for Nanotechnology. "We're not the first ones to come up with potential solutions to work with carbon nanotubes. But this is the only one that tackles both orientation and purity challenges at the same time."
Schipper further pointed out that the approach is from the bottom up with the use of organic chemistry to design and build a molecule which then does the hard work.
"Once you've built the pieces, the process is simple. It's a bench-top method requiring no special equipment," Schipper explained.
In contrast to self-assembly techniques which rely on the design of a suitable molecule to fit snuggly together, this process can be controlled at every step, including the size of the iptycene "pocket". In addition, this is the first a solution has been found to tackling the challenge of aligning and purifying carbon nanotubes at the same time.
The study, co-authored by Serxho Selmani, a doctoral candidate in the Department of Chemistry at Waterloo, appears this week in the journal Angewandte Chemie International Edition.
About the University of Waterloo
University of Waterloo is Canada’s top innovation university. With more than 36,000 students we are home to the world's largest co-operative education system of its kind. Our unmatched entrepreneurial culture, combined with an intensive focus on research, powers one of the top innovation hubs in the world.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Sustainability and Selective Soldering
09/15/2025 | Dr. Samuel J. McMaster, Pillarhouse InternationalSustainability is more than just a buzzword for the electronics industry; it’s a key goal for all manufacturing processes. This is more than a box-ticking exercise or simply doing a small part for environmentally friendly processes. Moving toward sustainable solutions drives innovation and operational efficiency.
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
EV Group Achieves Breakthrough in Hybrid Bonding Overlay Control for Chiplet Integration
09/12/2025 | EV GroupEV Group (EVG), a leading provider of innovative process solutions and expertise serving leading-edge and future semiconductor designs and chip integration schemes, today unveiled the EVG®40 D2W—the first dedicated die-to-wafer overlay metrology platform to deliver 100 percent die overlay measurement on 300-mm wafers at high precision and speeds needed for production environments. With up to 15X higher throughput than EVG’s industry benchmark EVG®40 NT2 system designed for hybrid wafer bonding metrology, the new EVG40 D2W enables chipmakers to verify die placement accuracy and take rapid corrective action, improving process control and yield in high-volume manufacturing (HVM).
Integrating Uniplate PLBCu6 With the Digital Factory Suite
09/12/2025 | Giovanni Obino and Andreas Schatz, MKS' AtotechPrinted circuit board manufacturing is rapidly changing, driven by miniaturization, stringent reliability requirements, and growing pressure for sustainable production. Meeting these challenges requires more than incremental improvements; it demands a combination of precise equipment and real-time process intelligence. The pairing of Uniplate® PLBCu6 with the Digital Factory Suite (DFS) demonstrates how hardware and software can work together to create more responsive, resource-efficient manufacturing.
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.