Missing Link to Novel Superconductivity Revealed
February 15, 2018 | Ames LaboratoryEstimated reading time: 2 minutes

Scientists at the U.S. Department of Energy’s Ames Laboratory have discovered a state of magnetism that may be the missing link to understanding the relationship between magnetism and unconventional superconductivity. The research, recently published in npj Nature Quantum Materials, provides tantalizing new possibilities for attaining superconducting states in iron-based materials.
“In the research of quantum materials, it’s long been theorized that there are three types of magnetism associated with superconductivity. One type is very commonly found, another type is very limited and only found in rare situations, and this third type was unknown, until our discovery,” said Paul Canfield, a senior scientist at Ames Laboratory and a Distinguished Professor and the Robert Allen Wright Professor of Physics and Astronomy at Iowa State University.
The scientists suspected that the material they studied, the iron arsenide CaKFe4As4 , was such a strong superconductor because there was an associated magnetic ordering hiding nearby. Creating a variant of the compound by substituting in cobalt and nickel at precise locations, called “doping,” slightly distorted the atomic arrangements which induced the new magnetic order while retaining its superconducting properties.
“The resources of the national laboratories were essential for providing for the diversity of techniques needed to reveal this new magnetic state,” said Canfield. “We’ve been able to stabilize it, it’s robust, and now we’re able study it. We think by understanding the three different types of magnetism that can give birth to iron-based superconductors, we’ll have a better sense of the necessary ingredients for this kind of superconductivity.”
The research is further discussed in the paper, “Hedgehog spin-vortex crystal stabilized in a hole-doped iron-based superconductor,” authored by William R. Meier, Qing-Ping Ding, Andreas Kreyssig, Sergey L. Bud’ko, Aashish Sapkota, Karunakar Kothapalli, Vladislav Borisov, Roser Valentí, Cristian D. Batista, Peter P. Orth, Rafael M. Fernandes, Alan I. Goldman, Yuji Furukawa, Anna E. Böhmer, and Paul C. Canfield; and published in the journal npj Nature Quantum Materials.
This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory.
Ames Laboratory is a U.S. Department of Energy Office of Science national laboratory operated by Iowa State University. Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.
DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.
Suggested Items
ESIA Statement on EU Funding for Competitiveness: A New Approach is Needed
05/09/2025 | ESIAThe European Semiconductor Industry Association (ESIA), representing the European leadership in semiconductor research, design, and manufacturing, would like to underscore the need for targeted and sustained investment to strengthen Europe’s strategic sectors.
New Database of Materials Accelerates Electronics Innovation
05/05/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
Hon Hai Research Institute Demonstrates Superiority of Shallow Quantum Circuits Beyond Prior Understanding
05/05/2025 | Hon Hai Technology GroupHon Hai Research Institute (HHRI), in a milestone collaborative effort, has demonstrated that parallel quantum computation can exhibit greater computational power than previously recognized, with its research results accepted for publication in the prestigious journal Nature Communications.
New Database of Materials Accelerates Electronics Innovation
05/02/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
Meet Thiago Guimaraes, IPC's New Director of Industry Intelligence
05/05/2025 | Chris Mitchell, IPC VP, Global Government RelationsThe fast pace of innovation in the electronics manufacturing industry means business owners must continuously adapt their processes and capabilities to meet changing customer demands and market trends. To that end, IPC has hired Thiago Guimaraes as the new director of Industry Intelligence. In this interview, Thiago shares key goals and objectives that could revolutionize the industry as he helps stakeholders navigate industry trends and challenges.