A Smoother Finish Allows Fluids to Flow
February 15, 2018 | A*STAREstimated reading time: 1 minute

Injection molding enables large-scale production of polymer and plastic materials with micrometer-sized features. Now, A*STAR scientists have developed a method for creating mold templates with high precision and few defects.
A fluid behaves very differently when it is confined to micrometer-scale channels. This phenomenon already has several applications such as enabling the analysis of small samples of blood.
These microfluidic systems are small and portable, easy to use without expert knowledge, and disposable because they are cheap to produce. But this disposability means that microfluidic chips need to be quickly mass produced.
Now, Jiang Guo and his colleagues from the A*STAR Singapore Institute of Manufacturing Technology have developed a method for fabricating molds that can quickly create microfluidic channels in polymer substrates. “The technology addresses a critical problem in mold insert fabrication for microfluidic chip production, and will enhance local industry,” says Guo.
Injection molding involves shaping a material while in a molten state using a metal template. It is cheap, fast, and useful for creating microfluidic chips. However, engineering a mold with precise micrometer-scale features and smooth surfaces is challenging as burrs and tool marks create defects. A post-polishing process can fix some of these imperfections, but it is difficult for polishing tools to access the recessed corners of microstructured surfaces and remove unwanted material uniformly.
Guo and his colleagues started by milling their template for a microfluidic channel 100 micrometers in depth and 100 micrometers in width on a special aluminum alloy. The channel was 100 millimeters in length and included two fluid inlets, one fluid outlet and a serpentine channel as reaction chamber. They then polished this template using a method known as magnetic field-assisted finishing. Two magnetic rollers rotating in opposite directions on either side of the mold create a magnetic field. This field controlled a magnetic abrasive made of carbonyl iron powder and alumina particles bound together by oil, which removed any unwanted material and smoothed the surface.
The researchers compared their template before and after this magnetic polish. They observed that the process preserved the height of the microstructure, although the edges were more rounded after polishing. The polish reduced the roughness of the surface by a factor of four, leaving a mirror-like finish. “The next step will be to use the polished mold template for actual injection molding,” says Guo.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
I-Connect007 Launches Advanced Electronics Packaging Digest
09/15/2025 | I-Connect007I-Connect007 is pleased to announce the launch of Advanced Electronics Packaging Digest (AEPD), a new monthly digital newsletter dedicated to one of the most critical and rapidly evolving areas of electronics manufacturing: advanced packaging at the interconnect level.
Panasonic Industry will Double the Production Capacity of MEGTRON Multi-layer Circuit Board Materials Over the Next Five Years
09/15/2025 | Panasonic Industry Co., Ltd.Panasonic Industry Co., Ltd., a Panasonic Group company, announced plans for a major expansion of its global production capacity for MEGTRON multi-layer circuit board materials today. The company plans to double its production over the next five years to meet growing demand in the AI server and ICT infrastructure markets.
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Integrated Solutions for Board-level Reliability: A Smarter Path Forward
08/27/2025 | Alan Gardner, MacDermid Alpha Electronics SolutionsIn today’s electronics manufacturing landscape, reliability is no longer just a benchmark but a business imperative. As industries such as automotive, aerospace, and high-performance computing (HPC) push the boundaries of innovation, the demand for dependable board-level performance under extreme conditions has never been greater.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.