USTC Realizes Small-Packet-and-Long-Distance Quantum Key Distribution
February 28, 2018 | USTCEstimated reading time: 2 minutes
USTC Quantum Cryptographic Research Group have perfected the security proof of Round-Robin-Differential-Phase-Shift (RRDPS) quantum key distribution theoretically. Based on this, the RRDPS protocol with the lowest number of packet and the longest achievable distance was realized in the world for the first time. The problems of large pulse number and low efficiency are solved.
RRDPS is a new quantum key distribution protocol proposed by Japanese and American scientists in 2014. The sender of the protocol encodes the random key on the phases of the optical pulses and forms a packet for every L pulse. This protocol can estimate the information leakage without monitoring signal disturbance parameters, which breaks through the design of quantum key distribution protocol. In practical applications, free of monitoring channel disturbance also brings the advantages of simplified system and high error rate tolerance, which aroused great interest in academia. However, there are still some key problems not solved in the protocol, such as rough or unknown information leakage proof or antecedents, large pulse number, complicated measurement device.
In order to solve these problems, the authors first improved the security proof of the RRDPS protocol theoretically. By constructing the eavesdropper's general collective attack model and fully considering the decoherence effect caused by the random phase on the eavesdropper' s auxiliary state in each pulse of the encoding state, a tight bound of the eavesdropper's information is given.
This theory can further optimize the estimation of eavesdropping information by combining the parameters of channel disturbance. This novel security proof clearly demonstrates the security mechanism of the RRDPS protocol, and the performance of the RRDPS is significantly improved. This new idea provided by this security proof is also useful for other high-dimensional QKD protocols.
The simulation results show that based on the new security proof, the secret key rate and the security distance of RRDPS protocol have been significantly improved. The pulse number of each packet L is greatly reduced compared with the original one. It is meaningful for reducing the difficulty of implementing the RRDPS system and enhancing its practicability.
In order to verify this theory, HAN Zhengfu’s group has also realized the simplest RRDPS demonstration experiment with L = 3. Key distribution without monitoring signal disturbance is achieved on 30 km fiber channel. If combined with channel disturbance parameters, this distance can reach 140 km. These results have important reference value for enriching the theories and methods of security analysis of high dimensional quantum key distribution and improving the practicability of the system.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
06/06/2025 | Nolan Johnson, I-Connect007Maybe you’ve noticed that I’ve been taking to social media lately to about my five must-reads of the week. It’s just another way we’re sharing our curated content with you. I pay special attention to what’s happening in our industry, and I can help you know what’s most important to read about each week. Follow me (and I-Connect007) on LinkedIn to see these and other updates.
INEMI Interim Report: Interconnection Modeling and Simulation Results for Low-Temp Materials in First-Level Interconnect
05/30/2025 | iNEMIOne of the greatest challenges of integrating different types of silicon, memory, and other extended processing units (XPUs) in a single package is in attaching these various types of chips in a reliable way.
Siemens Leverages AI to Close Industry’s IC Verification Productivity Gap in New Questa One Smart Verification Solution
05/13/2025 | SiemensSiemens Digital Industries Software announced the Questa™ One smart verification software portfolio, combining connectivity, a data driven approach and scalability with AI to push the boundaries of the Integrated Circuit (IC) verification process and make engineering teams more productive.
Cadence Unveils Millennium M2000 Supercomputer with NVIDIA Blackwell Systems
05/08/2025 | Cadence Design SystemsAt its annual flagship user event, CadenceLIVE Silicon Valley 2025, Cadence announced a major expansion of its Cadence® Millennium™ Enterprise Platform with the introduction of the new Millennium M2000 Supercomputer featuring NVIDIA Blackwell systems, which delivers AI-accelerated simulation at unprecedented speed and scale across engineering and drug design workloads.
DARPA Selects Cerebras to Deliver Next Generation, Real-Time Compute Platform for Advanced Military and Commercial Applications
04/08/2025 | RanovusCerebras Systems, the pioneer in accelerating generative AI, has been awarded a new contract from the Defense Advanced Research Projects Agency (DARPA), for the development of a state-of-the-art high-performance computing system. The Cerebras system will combine the power of Cerebras’ wafer scale technology and Ranovus’ wafer scale co-packaged optics to deliver several orders of magnitude better compute performance at a fraction of the power draw.