Domain Walls Allow Dissipationless Chiral Edge Conduction of Electrons
March 20, 2018 | RIKENEstimated reading time: 2 minutes

By controlling magnetized patches within thin films of material, RIKEN researchers have created electronic channels that can carry a current without any loss of energy. This principle could eventually lead to extremely low-power electronic devices for storing and processing information.
The researchers’ work relies on a phenomenon called the quantum anomalous Hall effect (QAHE). This is related to the Hall effect, in which a magnetic field applied at right angles to an electrical current causes electrons in the current to drift to one side of the conductor, creating a voltage across the material.
The QAHE typically occurs in thin films at very low temperatures. Magnetic atoms within the material, rather than an external magnetic field, cause the same sort of electron drift.
Now, Kenji Yasuda of the University of Tokyo, along with colleagues at the RIKEN Center for Emergent Matter Science, has created a device that demonstrates how the QAHE could be exploited in computer chips.
Their device contained layers of bismuth antimony telluride, each a few nanometers thick, with alternating layers seeded with magnetic chromium atoms. Working at just half a degree Celsius above absolute zero, the researchers used a magnetic force microscope to apply a small magnetic field to it. They scanned the microscope over the device to create a magnetic patch, or domain, a few tens of micrometers wide. The edges of this area, known as domain walls, acted as magnetic boundaries: the magnetic orientation of the material pointed upward on one side of the wall and downward on the other side.
The researchers found that electrons, drifting due to the QAHE, could bounce along the domain wall in a process called chiral edge conduction. This happened because each domain wall had two ‘chiral edge states’, one on either side of the wall, which acted as channels to carry electrons in the same direction. “Since these electrons are never scattered by disorders or defects, they can flow without loss of energy,” says Yasuda.
The team built more of these devices and used the magnetic force microscope to create a range of different domain wall patterns that controlled how current flowed through the devices. By using the microscope to move the domain wall patterns around, they could also modify the performance of the devices.
The team now hopes to create chiral edge states at higher temperatures and control their position using an electric current. “These developments will be important steps for realizing electronic devices based on chiral edge states,” Yasuda comments.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Weaning the U.S. Military Off a Tablet Supply Chain That Leads to China
09/08/2025 | Jim Will, USPAETablet computers are essential to how our military fights, moves and sustains, but these devices are built on a fragile global supply chain with strong ties to China. Building domestic manufacturing to eliminate this vulnerability is feasible if we tap into the information and capabilities that already exist and create strong demand for tablets produced by trusted and assured sources.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Semiconductors Get Magnetic Boost with New Method from UCLA Researchers
07/31/2025 | UCLA NewsroomA new method for combining magnetic elements with semiconductors — which are vital materials for computers and other electronic devices — was unveiled by a research team led by the California NanoSystems Institute at UCLA.
Japan’s OHISAMA Project Aims to Beam Solar Power from Space This Year
07/14/2025 | I-Connect007 Editorial TeamJapan could be on the cusp of making history with its OHISAMA project in its quest to become the first country to transmit solar power from space to Earth, The Volt reported.
The Big Picture: Our Big ‘Why’ in the Age of AI
06/25/2025 | Mehul Davé -- Column: The Big PictureWith advanced technology, Tesla, Google, Microsoft, and OpenAI can quickly transform life as we know it. Several notable artificial intelligence (AI) studies, including the 2024 McKinsey Global Survey on AI, have offered insights into AI’s adoption, impact, and trajectory. The McKinsey study revealed that AI adoption continues to grow, with 50% of respondents reporting using AI in at least one business area.