Scientists Use AI to Predict Biological Age Based on Smartphone and Wearables Data
March 30, 2018 | MIPTEstimated reading time: 2 minutes
Researchers from Moscow Institute of Physics and Technology (MIPT) and the longevity biotech company GERO have shown that physical activity data acquired from wearables can be used to produce digital biomarkers of aging and frailty. The breakthrough demonstration untaps the emerging potential of combining wearable sensors and AI technologies for continuous health risk monitoring with real-time feedback to life & health insurance, healthcare and wellness providers. The paper was published in Scientific Reports.
Many physiological parameters demonstrate tight correlations with age. Various biomarkers of age, such as DNA methylation, gene expression or circulating blood factor levels could be used to build accurate «biological clocks» to obtain individual biological age and the rate of aging estimations. Yet large-scale biochemical or genomic profiling is still logistically difficult and expensive for any practical applications beyond academic research.
The recent introduction of affordable wearable sensors enables collection and cloud-storing of personal digitized activity records. This tracking is already done without interfering with the daily routines of hundreds of millions of people all over the world.
Peter Fedichev, Ph.D., the head of the Laboratory of Biological Systems Simulation at MIPT, GERO Science Director, explains: "Artificial Intelligence is a powerful tool in pattern recognition and has demonstrated outstanding performance in visual object identification, speech recognition, and other fields. Recent promising examples in the field of medicine include neural networks showing cardiologist-level performance in detection of the arrhythmia in ECG data, deriving biomarkers of age from clinical blood biochemistry, and predicting mortality based on electronic medical records. Inspired by these examples, we explored AI potential for Health Risks Assessment based on human physical activity".
Researchers have analyzed physical activity records and clinical data from a large 2003–2006 US National Health and Nutrition Examination Survey (NHANES). They trained the neural network to predict biological age and mortality risk of the participants from the one-week long stream of activity measurements. A state-of-the-art Convolution Neural Network was used to unravel the most biologically relevant motion patterns and establish their relation to general health and recorded lifespan. A novel AI-based algorithm created by scientists has outperformed any previously available models of biological age and mortality risks from the same data.
"Life and health insurance programs have already begun to provide discounts to their users based on physical activity monitored by fitness wristbands. We report that AI can be used to further refine the risks models. Combination of aging theory with the most powerful modern machine learning tools will produce even better health risks models to mitigate longevity risks in insurance, help in pension planning, and contribute to upcoming clinical trials and future deployment of anti-aging therapies" — concludes Peter Fedichev.
The scientific team has already developed a free beta-version of an iPhone application Gero Lifespan estimating user’s lifespan with the help of the built-in smartphone accelerometer.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
06/06/2025 | Nolan Johnson, I-Connect007Maybe you’ve noticed that I’ve been taking to social media lately to about my five must-reads of the week. It’s just another way we’re sharing our curated content with you. I pay special attention to what’s happening in our industry, and I can help you know what’s most important to read about each week. Follow me (and I-Connect007) on LinkedIn to see these and other updates.
INEMI Interim Report: Interconnection Modeling and Simulation Results for Low-Temp Materials in First-Level Interconnect
05/30/2025 | iNEMIOne of the greatest challenges of integrating different types of silicon, memory, and other extended processing units (XPUs) in a single package is in attaching these various types of chips in a reliable way.
Siemens Leverages AI to Close Industry’s IC Verification Productivity Gap in New Questa One Smart Verification Solution
05/13/2025 | SiemensSiemens Digital Industries Software announced the Questa™ One smart verification software portfolio, combining connectivity, a data driven approach and scalability with AI to push the boundaries of the Integrated Circuit (IC) verification process and make engineering teams more productive.
Cadence Unveils Millennium M2000 Supercomputer with NVIDIA Blackwell Systems
05/08/2025 | Cadence Design SystemsAt its annual flagship user event, CadenceLIVE Silicon Valley 2025, Cadence announced a major expansion of its Cadence® Millennium™ Enterprise Platform with the introduction of the new Millennium M2000 Supercomputer featuring NVIDIA Blackwell systems, which delivers AI-accelerated simulation at unprecedented speed and scale across engineering and drug design workloads.
DARPA Selects Cerebras to Deliver Next Generation, Real-Time Compute Platform for Advanced Military and Commercial Applications
04/08/2025 | RanovusCerebras Systems, the pioneer in accelerating generative AI, has been awarded a new contract from the Defense Advanced Research Projects Agency (DARPA), for the development of a state-of-the-art high-performance computing system. The Cerebras system will combine the power of Cerebras’ wafer scale technology and Ranovus’ wafer scale co-packaged optics to deliver several orders of magnitude better compute performance at a fraction of the power draw.