Scientists Develop Topological Defect Detection Method
April 5, 2018 | ITMO UniversityEstimated reading time: 3 minutes

An international scientific team has developed a new method of probing topological structures and their topological phase transitions. The method is based on examining the reflection spectrum of EM-waves reflecting off an object from different impact angles. The accuracy of the method’s results has been verified experimentally in both IR and microwave spectra.
Topology is an area of mathematics that studies the properties of objects that remain unchanged despite the objects’ constant deformation. From a topological point of view, a doughnut and a mug are the same since they both have a hole in the center. Topological invariants lie at the core of many important observable properties of matter. They are incorporated in the creation of new, unusual materials, which are used, for example, to control light propagation in optical systems.
To detect topologically non-trivial structures, scientists usually scan the propagation of an object’s near-field. In other words, they monitor an object’s emissions at a distance much smaller than a wavelength. The resulting near-field map lets them draw conclusions about the topology of the object’s photonic bands. For instance, it is possible to determine if the object contains any topological edge states, and to what degree they are protected from scattering in areas with defects or non-uniformity.
Scientists from ITMO University together with their colleagues from the City University of New York have proposed a new method of topological analysis based on spectroscopy of an object’s far-field.
“We posed the question: do the topological properties of a system affect how it disperses light at long distances? – explains , research fellow at ITMO’s Metamaterials Laboratory, – To answer it, our colleagues, led by Alexander Khanikaev, developed and manufactured two two-dimensional structures using silicon cylinders of slightly different geometric parameters. One was trivial, and the other topological”.
Making such structures isn’t easy, say the scientists. For that, they need to use the latest nanofabrication methods. Having analyzed the resulting samples’ spectra, they developed a theoretical model depicting the results of the analysis. It allowed them to determine the structure’s topological invariant. This model later became the basis for the far-field spectroscopy method.
“At some point, our reviewers expressed interest in whether we can confirm that the results we got through far-field analysis are in line with the standard technique of near-field analysis. To do that, we conducted a microwave experiment. We created a metasurface of two parts: one topologically trivial and one non-trivial. Our goal was to observe the topological state localized on the border of these two parts. In the end, we managed to produce an all-dielectric metasurface which contains topologically-protected states in the microwave band. At the same time, the polarization of the edge state turned out to be unequivocally connected to the direction of its propagation. The experiment confirmed the accuracy of our model, and the article was accepted”, - adds , PhD student at ITMO’s Faculty of Physics and Engineering.
The new method’s advantage is that it lets researchers study the topology of objects from a distance.
“We no longer need to examine the propagation field right on the surface of the structure. We can now detect unusual topological states in materials from afar. In addition, as we developed the method, we proved that while energy loss can occur in topological structures, topological edge states still persist, – notes Maxim Gorlach. – We are now planning to use the new method to study three-dimensional topological insulators and we’re expecting some new and exciting results”.
Earlier on, topological states were only suggested for use in secure signal transmission. But now, explain the scientists, the range of applications is becoming much wider
“It is known that nanofabrication methods are limited in precision due to various technological reasons – and photonic nanostructures are guaranteed to contain defects. This leads to loss of efficiency and accuracy of the devices produced with these methods. For example, any biosensor made using nanofabrication methods will be limited in the accuracy of its measurements, all due to the defects. Using topological states in the construction of these detectors, we can increase their sensitivity and precision – even despite the presence of structural defects,” – says project lead Alexander Khanikaev.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
SMT Perspectives and Prospects: Warren Buffett’s Perpetual Wisdom, Part 2
08/13/2025 | Dr. Jennie Hwang -- Column: SMT Perspectives and ProspectsOver the years, I have cherished the lessons by Warren Buffett and Charlie Munger at the Berkshire Hathaway annual shareholders meeting in Omaha, Nebraska. This year, I was among the more than 40,000 who attended the May 3 meeting. Millions more from around the world, including from the UK, Germany, Japan, China, Panama, and Guatemala, tuned in remotely and via CNBC’s livestream. This is the second of a two-part series on the Berkshire Hathaway annual shareholders meeting
I-Connect007 Observes U.S. Independence Day Holiday
07/04/2025 | Nolan Johnson, I-Connect007Today marks the 249th anniversary of the signing of the American Declaration of Independence by the Continental Congress. Known widely in the U.S. as Independence Day or “The Fourth of July,” this day also commemorates the declaration by the Congress that the American colonies are free and independent states.
Beyond the Board: Orbital High Ground—Why Space Superiority Is Slipping Away
06/17/2025 | Jesse Vaughan -- Column: Beyond the Board“The next war might be won—or lost—22,000 miles above Earth.” That’s not science fiction. It’s the stark reality defense planners are beginning to confront as space transitions from a support domain to a full-spectrum warfighting environment. For decades, the United States held an uncontested advantage in space, relying on exquisite, few, and highly capable systems to enable precision warfare, real-time intelligence, and global communications. Today, that edge is under siege.
IPC Report Recaps Imperatives in Global Chip Race
05/19/2025 | IPCWith funding awards under the U.S. CHIPS and Science Act currently under review, IPC just shared a new Industry Intelligence Report focused on the issues and players involved.
Toshiba Commemorates Earth Day Throughout Calendar
04/22/2025 | ToshibaToshiba America Business Solutions celebrates Earth Day 2025 by facilitating the continuous reforestation of trees throughout eco-sensitive areas globally and preserving open land from e-waste.