-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueIntelligent Test and Inspection
Are you ready to explore the cutting-edge advancements shaping the electronics manufacturing industry? The May 2025 issue of SMT007 Magazine is packed with insights, innovations, and expert perspectives that you won’t want to miss.
Do You Have X-ray Vision?
Has X-ray’s time finally come in electronics manufacturing? Join us in this issue of SMT007 Magazine, where we answer this question and others to bring more efficiency to your bottom line.
IPC APEX EXPO 2025: A Preview
It’s that time again. If you’re going to Anaheim for IPC APEX EXPO 2025, we’ll see you there. In the meantime, consider this issue of SMT007 Magazine to be your golden ticket to planning the show.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
Stencil Printing Techniques for Challenging Heterogeneous Assembly Applications
April 16, 2018 | Mark Whitmore and Jeff Schake, ASM Assembly SystemsEstimated reading time: 3 minutes

A new generation of near microscopic size SMT chip capacitors has appeared in the market, known as either 0201 (metric dimension label) or 008004 (imperial dimension label). Assembly results using these components is so far largely obscured from publication and highly proprietary. All aspects of the assembly process are expected to be challenged to accommodate the extreme level of miniaturization embodied in this device. The objective of this research is to investigate and characterize the stencil printing process for compatibility with M0201 (metric 0201) capacitor assembly. Effects of circuit board quality, stencil thickness, and stencil nano-coating are the primary experiment variables reported against solder paste volume transfer efficiency and raw-volume print distribution.
Figure 1: M0201 capacitor dimensions and tolerances.
M0201
The designation M0201 implies a case size length of 0.2mm and width of 0.1mm, when in fact these are produced at nominal dimensions of 0.25mm x 0.125mm (Figure 1).
In a footprint-area comparison, the M0201 covers only 39% of a M0402 (imperial 01005) chip component. M0201 capacitors were first commercially available for volume prototype assembly testing in 2014. Resistor M0201 passives are not yet known to be offered.
PCB land design options for M0201 are shown in Figure 2 as prescribed by the component manufacturer. The smallest pad size is 125μm x 70μm, which approximately matches the metal end terminal footprint. The largest pad size nearly doubles the smallest pad size area at 145μm x 120μm.
The pad design of our preference is shown in Figure 3, which is at the top limit of the suggested pad size range. The motivation for using such sizeable pad dimensions include:
Figure 2: M0201 vendor pad size recommendations.
Over-etched Cu is expected to be problematic at this dimensional scale. Using the largest Cu pad design should at least help to improve PCB manufacturability.
Typically, the stencil aperture size mimics pad the dimensions. The largest pad area offers to ease aperture area ratios and permits potentially improved print volume control.
Prerequisite Solder Volume
The determination of a suitable stencil aperture capacity requires prerequisite knowledge of the appropriate reflowed solder joint form. The IPC-A-601E standard was consulted as an appropriate reference to determine this. Figure 4 illustrates the model used to establish the structure of an acceptable M0201 solder joint of minimum volume. Author judgment prevailed for dimensions not explicitly provided in the 601E standard. The determination of this smallest solder volume is helpful in establishing a stencil design and for evaluating print performance against solder paste inspection (SPI) data.
Figure 3: Selected M0201 pad design for drint study
The geometry of the soldered terminations with minimum solder volume have been simplified as triangles at the sides (V1, V2) and end of the terminal contact (V3) while the largest volume contributor to the solder joint is the rectangular area underneath it (V4). The solder thickness dimension G contributes substantially to the overall solder joint volume. As the objective here is to determine a minimum solder volume, our interpretation of the 601E standard does not require the pad to be fully wetted to form an acceptable solder joint shape. An acceptable ratio of solder paste to metal by volume is 2:1. From this it is found that each chip component termination should require at least 0.48 nanoliters (1nl = 1,000,000μm3) of printed solder paste volume to form an acceptable reflowed solder joint. Note this amount scales to the pad dimensions selected (i.e., smaller pads will not require as much solder paste to comply).
Figure 4: Minimum solder volume termination model.
The printing stencil must be designed with aperture opening dimensions that will allow solder paste transfer accomplishing at least 0.48nl per pad. The difficulty in achieving this relates to practical restrictions on stencil thickness. For the products likely to see earliest implementation of M0201s, common stencil thickness used today is 100μm. The inclusion of M0201 will compel the use of even thinner stencil foils to reduce the risk of producing insufficient volume paste deposits attributed to clogged apertures. It is well documented that print transfer efficiency (TE) of solder paste scales proportionally to stencil aperture area ratio. Area ratio (AR) is defined as the aperture opening area divided by the aperture wall area.
AR values reducing further away from 0.6 will escalate average paste transfer loss while also increasing scatter in printed deposit size and shape.
To read the full article, which appeared in the March 2018 issue of SMT007 Magazine, click here.
Suggested Items
Koh Young Installs 24,000th Inspection System at Top 20 EMS
05/14/2025 | Koh YoungKoh Young, the global leader in True 3D measurement-based inspection and metrology solutions, proudly announces the installation of its 24,000th inspection system at a Top 20 Global EMS in Thailand.
Indium’s Karthik Vijay to Present on Dual Alloy Solder Paste Systems at SMTA’s Electronics in Harsh Environments Conference
05/06/2025 | Indium CorporationIndium Corporation Technical Manager, Europe, Africa, and the Middle East Karthik Vijay will deliver a technical presentation on dual alloy solder paste systems at SMTA’s Electronics in Harsh Environments Conference, May 20-22 in Amsterdam, Netherlands.
SolderKing Achieves the Prestigious King’s Award for Enterprise in International Trade
05/06/2025 | SolderKingSolderKing Assembly Materials Ltd, a leading British manufacturer of high-performance soldering materials and consumables, has been honoured with a King’s Award for Enterprise, one of the UK’s most respected business honours.
Knocking Down the Bone Pile: Gold Mitigation for Class 2 Electronics
05/07/2025 | Nash Bell -- Column: Knocking Down the Bone PileIn electronic assemblies, the integrity of connections between components is paramount for ensuring reliability and performance. Gold embrittlement and dissolution are two critical phenomena that can compromise this integrity. Gold embrittlement occurs when gold diffuses into solder joints or alloys, resulting in mechanical brittleness and an increased susceptibility to cracking. Conversely, gold dissolution involves the melting away of gold into solder or metal matrices, potentially altering the electrical and mechanical properties of the joint.
'Chill Out' with TopLine’s President Martin Hart to Discuss Cold Electronics at SPWG 2025
05/02/2025 | TopLineBraided Solder Columns can withstand the rigors of deep space cold and cryogenic environments, and represent a robust new solution to challenges facing next generation large packages in electronics assembly.