Lab-On-A-Chip Delivers Critical Immunity Data for Vulnerable Populations
April 27, 2018 | University of TorontoEstimated reading time: 2 minutes

For millions of displaced people around the world — many of them refugees, living in temporary shelters under crowded conditions — an outbreak of disease is devastating. Each year, the measles virus kills more than 134,000 people globally, and another 100,000 children are born with defects caused by congenital rubella syndrome. Both diseases are preventable by vaccination.
Now, a team of researchers from the University of Toronto, including alumni Alphonsus Ng (IBBME PhD 1T5) and Ryan Fobel (IBBME PhD 1T6), has applied a hacker mentality to developing a portable, reconfigurable lab-on-a-chip diagnostic platform and field-tested the system in remote Kenya. Their validated platform can gauge the level of immunity to vaccine-preventable diseases among vulnerable populations. Their work appears today in the journal Science Translational Medicine.
“We found that our low-cost device matched the international laboratory-standard reference tests of the Kenyan Medical Research Institute for 86 per cent of measles samples, and 91 per cent of rubella samples,” says Darius Rackus, one of the lead authors of the paper.
These results underscore their platform’s potential to help identify populations susceptible to epidemics in remote or under-resourced locations.
“Our platform is inexpensive, fast and flexible — there’s nothing like it out there,” says Rackus. “We see it as a powerful tool for public health workers on the front lines, who have no access to health records, or may be dealing with humanitarian emergencies.”
Rackus and his team, led by Professor Aaron Wheeler (Chemistry, IBBME), are world leaders in the area of digital microfluidics, a technique used to move, split, recombine and mix miniscule droplets of liquid all on a tiny ‘chip.’ The chips are made using low-cost fabrication techniques such as ink-jet and 3D printing, and the droplets are controlled by applying electrical signals to different electrodes.
In June 2016 four members of the Wheeler Lab travelled to the Kakuma refugee camp in northwestern Kenya to validate their platform, dubbed the MR Box — a desktop lab the size of a toaster oven configured to test for measles and rubella.
They arrived in Kakuma following a massive public-health immunization campaign and tested hundreds of children and their caregivers for the presence of molecular markers indicating disease immunity. They then sent their samples to the Kenyan Medical Research Institute national laboratory in Nairobi for validation.
“For the first time taking digital microfluidics out of the lab, this is phenomenal result,” says Julian Lamanna, one of the paper’s authors and a member of the team who was on the ground in Kakuma. “In future, with simple statistical analyses our point-of-care system could be used to monitor the levels of immunity within dynamic populations, helping prevent outbreaks before they happen.”
“If you could distribute these devices at airports or points of entry around the world, they could become a powerful tool for disease surveillance and monitoring,” adds Rackus. “They also have the potential to significantly reduce the burden on expensive and sophisticated diagnostic labs that currently do all these epidemiological tests.”
Since the trip to Kakuma, the team has taken MR Boxes for additional testing in the Democratic Republic of the Congo. They are also developing new chips to test for different markers and diseases, including zika and malaria.
“What we’ve demonstrated is a universal platform — our microfluidic chips are relatively generic, and highly customizable,” says Wheeler, whose lab is housed in U of T’s Donnelly Centre. “Now that we’ve seen how practical it is in the field, we want to adapt it to as many diseases and environmental conditions as we can.”
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Weaning the U.S. Military Off a Tablet Supply Chain That Leads to China
09/08/2025 | Jim Will, USPAETablet computers are essential to how our military fights, moves and sustains, but these devices are built on a fragile global supply chain with strong ties to China. Building domestic manufacturing to eliminate this vulnerability is feasible if we tap into the information and capabilities that already exist and create strong demand for tablets produced by trusted and assured sources.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Semiconductors Get Magnetic Boost with New Method from UCLA Researchers
07/31/2025 | UCLA NewsroomA new method for combining magnetic elements with semiconductors — which are vital materials for computers and other electronic devices — was unveiled by a research team led by the California NanoSystems Institute at UCLA.
Japan’s OHISAMA Project Aims to Beam Solar Power from Space This Year
07/14/2025 | I-Connect007 Editorial TeamJapan could be on the cusp of making history with its OHISAMA project in its quest to become the first country to transmit solar power from space to Earth, The Volt reported.
The Big Picture: Our Big ‘Why’ in the Age of AI
06/25/2025 | Mehul Davé -- Column: The Big PictureWith advanced technology, Tesla, Google, Microsoft, and OpenAI can quickly transform life as we know it. Several notable artificial intelligence (AI) studies, including the 2024 McKinsey Global Survey on AI, have offered insights into AI’s adoption, impact, and trajectory. The McKinsey study revealed that AI adoption continues to grow, with 50% of respondents reporting using AI in at least one business area.