Smart Skin for Flexible Monitoring
May 4, 2018 | KAUSTEstimated reading time: 2 minutes
A thin smart patch called Marine Skin could make studying the behavior of marine animals easier and more informative. This system for electronic tagging of animals is based on stretchable silicone elastomers that can withstand twisting, shearing and stretching, even when exposed to high pressures in deep waters.
"The integrated flexible electronics can track an animal's movement and diving behavior and the health of the surrounding marine environment in real time," says Joanna Nassar. Now at California Institute of Technology, Nassar was a Ph.D. student in the KAUST team that developed the patch.
Being able to monitor and record a range of environmental parameters is vital in the study of marine ecosystems. Yet existing systems for tracking animals in the sea are bulky and uncomfortable for animals to wear.
"Using simple design tricks and soft materials, we were able to beat the current standard systems in terms of noninvasiveness, weight, operational lifetime and speed of operation," says Nassar. In the current prototype, the location data is supplemented by recordings of water temperature and salinity. Additional sensing capabilities could be added in future. Possibilities include sensing the physiological state of the tagged animals. This would allow information about ocean chemistry to be correlated with the heath and activity of even small animals as they move around in their habitat.
The data is currently retrieved via wireless connection when the tag is removed. In future, the researchers hope to develop remote data retrieval procedures by overcoming the problems of transmitting signals through water.
Marine Skin is one of many innovations developed by Professor Muhammad Mustafa Hussain's group in collaboration with Professor Carlos Duarte's group at KAUST. "We are consistently advancing the field of flexible and stretchable electronics by making electronic systems in which every component is physically flexible," says Hussain. His team partnered with Duarte's group of marine scientists for their specialization in large-scale marine megafauna mobility studies.
Marine Skin has been tested and demonstrated when glued onto a swimming crab, Portunus pelagicus, but is suitable for tagging a wide range of sea creatures. The team plan to move on to studies with dolphins and whale sharks. Their long-term aim is to achieve reliable performance when Marine Skin is attached for up to a year on individual animals of diverse types.
Nassar believes that the existing system and the planned upgrades will allow significantly more comprehensive analysis of the marine ecosystem, including studies of animals in locations where they could not previously be monitored. She points out that investigating behavioral changes of marine species in relation to the quality and health of the ocean will help scientists assess habitability in the context of increasing global temperatures, problems of pollution and the effects of overfishing.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Printed Electronics Market Size to Top $83.77 Billion by 2034 Driven by IoT Adoption and Flexible Device Demand
09/11/2025 | Globe NewswireThe printed electronics market size has been calculated at U$19,920 million in 2025 and is expected to grow from $23,58 million in 2026 to approximately $83,770 million by 2034.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Global Flexible PCB Output Expected to Surpass $20 Billion by 2025, with AI Glasses Emerging as a New Growth Driver
08/25/2025 | TPCAThe Taiwan Printed Circuit Association (TPCA) and the Industrial Technology Research Institute (ITRI) released the "2025 Global Flexible PCB Industry Outlook" in August.
Nano Silver Inks Market Forecast Report 2025-2030
08/20/2025 | Globe NewswireThe Nano Silver Inks Market is expected to grow from USD 427.415 million in 2025 to USD 836.160 million in 2030, at a CAGR of 14.36%.
Flexible Circuit Technologies to Host Free Flex Heater Webinar
08/18/2025 | Flexible Circuit TechnologiesGlobal Supplier of flexible circuits, flex design services, and assembly/box-build services, Flexible Circuit Technology will host their latest webinar, "Thermal Precision Meets Flexibility: The Technology Behind Heater Circuits" on Tuesday, August 26th, 2025 at 11 AM EDT.