Simple Equation Directs Creation of Clean-Energy Catalysts
May 15, 2018 | University of Nebraska-LincolnEstimated reading time: 3 minutes
New guidelines laid down by Nebraska and Chinese researchers could steer the design of less costly, more efficient catalysts geared toward revving up the production of hydrogen as a renewable fuel.
Nebraska's Xiao Cheng Zeng and colleagues have identified several overlooked factors critical to the performance of single-atom catalysts: individual atoms, usually metallic and anchored by surrounding molecular frameworks, that kick-start and accelerate chemical reactions.
The team folded those variables into a simple equation requiring what Zeng described as "back-of-the-envelope calculations." That equation should allow researchers to easily predict how the choice of atom and its surrounding material will affect catalytic performance. To date, researchers have often relied on time-consuming trial and error to find promising single-atom catalysts.
"All this (relevant) information can be easily gathered from a textbook," said Zeng, Chancellor's University Professor of chemistry. "Even before an experiment, you can quickly see whether it's a good way to make the catalyst. We're simplifying the process."
Using its equation, the team discovered several atom-framework combinations that approximate the performance of precious-metal catalysts - platinum, gold, iridium - at mere thousandths of the cost. One swapped out a platinum atom for manganese; another replaced iridium with cobalt.
"There are two (primary) ways to reduce the price of these catalysts," Zeng said. "One is to use as little of the metals as possible - so single-atom catalysts are the cheapest. The other direction is finding alternative metals like iron or aluminum or zinc that are very cheap."
Two of the team's atom-framework combinations can split water into its constituent parts: an oxygen atom and two hydrogen atoms, the latter of which can serve as a green fuel for vehicles and other applications. Two other catalyst candidates help oxygen atoms take on more electrons, priming them to bond with positively charged hydrogen atoms and form water - the desired byproduct of hydrogen fuel cells.
"Right now, this is not the prevailing way to produce hydrogen," Zeng said. "The industry still uses fossil fuels to produce hydrogen. It's just cheaper. So that's our motivation: lower the cost so that all these cleaner, fuel-producing reactions become (viable)."
SCOUTING REPORT
The researchers found that the number and nature of atoms directly bonded to a single-atom catalyst can profoundly affect how it catalyzes chemical reactions. In some instances, the catalyzing atom might be attached to either three or four other atoms, each of which is itself part of a five- or six-atom ring. Every atom in that immediate network also has a known attraction to electrons, with the strength of that attraction further influencing catalytic performance.
The arrangement and qualities of those neighboring atoms matter, Zeng said, in the same way that an offensive line matters to a stationary, pocket-passing quarterback. And the team's new equation could act as a scouting report for researchers looking to amplify the strengths or cover the weaknesses of their personnel, he said.
For Zeng and his colleagues, that personnel consisted of more than 20 so-called transition metals that are generally worse than precious metals at catalyzing reactions. But the team showed that surrounding a cobalt, iron or other second-string atom with the right environment - sometimes a honeycomb of carbon atoms known as graphene, sometimes a network of nitrogen atoms - can elevate its performance.
"Every offensive line is different," Zeng said. "How do you make the quarterback function the best in that pocket? How do you find the best quarterback within different pockets?
"If you have a two-star quarterback, you need a better offensive line. But even a backup quarterback can perform well with the right line."
Zeng authored the study with colleagues from Beijing University of Chemical Technology. The study appeared in the journal Nature Catalysis and was highlighted in Chemical and Engineering News, a magazine published by the American Chemical Society.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
TSMC and South Korean Rivals Lose U.S. Fast-Track Export Privileges for China
09/03/2025 | I-Connect007 Editorial TeamWashington has revoked Taiwan Semiconductor Manufacturing Co.’s (TSMC) special fast-track status for U.S. chip-making equipment exports to its Nanjing, China, plant, Reuters reported on Sept. 2. The move comes days after similar actions against South Korean chip makers Samsung Electronics and SK Hynix.
Summit Interconnect Names Milan Shah as Vice Chairman of the Board
08/26/2025 | Summit Interconnect, Inc.Summit Interconnect, a leading provider of advanced PCB manufacturing, today announced that Milan Shah has been named Vice Chairman of the Board.
Haylo Labs Acquires Plessey Semiconductors
08/20/2025 | Haylo LabsHaylo Labs has acquired Plessey Semiconductors, the UK’s leading innovator in microLED display technology.
50% Copper Tariffs, 100% Chip Uncertainty, and a Truce
08/19/2025 | Andy Shaughnessy, I-Connect007If you’re like me, tariffs were not on your radar screen until a few months ago, but now political rhetoric has turned to presidential action. Tariffs are front-page news with major developments coming directly from the Oval Office. These are not typical times. President Donald Trump campaigned on tariff reform, and he’s now busy revamping America’s tariff policy.
U.S. Uses Secret Trackers to Trace AI Chips Diverted to China, Sources Say
08/18/2025 | I-Connect007 Editorial TeamTwo sources told Reuters that U.S. authorities have secretly placed location trackers in some advanced chip shipments they see as at high risk of illegal diversion to China. They said the trackers are intended to locate AI chips that are sent to locations restricted by U.S. export laws, but authorities only examine some shipments.