NASA’s Emerging Microgap Cooling To Be Tested Aboard Reusable Launch Vehicle
May 15, 2018 | NASAEstimated reading time: 3 minutes
An emerging technology for removing excessive, potentially damaging heat from small, tightly packed instrument electronics and other spaceflight gear will be demonstrated for the first time during an upcoming suborbital flight aboard a reusable launch vehicle.
Thermal engineer Franklin Robinson, who works at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, is scheduled to fly his experiment aboard the fully reusable Blue Origin New Shepard launch vehicle to prove that the microgap-cooling technology is immune from the effects of zero gravity.
The demonstration, funded by NASA’s Space Technology Mission Directorate’s Flight Opportunities program, is an important step in validating the system, which engineers believe could be ideal for cooling tightly packed, high-power integrated circuits, power electronics, laser heads or other devices. The smaller the space between these electronics, the harder it is to remove the heat.
Because these devices are vulnerable to overheating — just like any electronic device on Earth — the cooling technology must operate under all conditions, including the microgravity environment found in space.
“Frank [Robinson] is demonstrating the fundamental concept and we need the flight validation to gain confidence,” said Goddard Senior Technologist for Strategic Integration Ted Swanson. “While theory predicts that the lack of gravity would have a negligible impact on the performance of microgap coolers, this needs to be demonstrated in a space-like environment. Otherwise, potential users are unlikely to commit to the technology.”
Microchannel Conduits
With microgap cooling, heat generated by electronics and other devices is removed by flowing a coolant through embedded, rectangular-shaped channels within or between heat-generating devices. Robinson’s flight experiment also features “flow boiling,” where, as its name implies, the coolant boils as it flows through the tiny gaps. According to Robinson, the technique offers a higher rate of heat transfer, which keeps devices cooler and, therefore, less likely to fail due to overheating.
To remove heat in more traditional electronic devices, designers create a “floor plan.” They keep the heat-generating circuits and other hardware as far apart as possible. The heat travels into the printed circuit board, where it is directed to a clamp in the sidewall of the electronics box, eventually making its way to a box-mounted radiator.
Traditional approaches, however, would not work well for emerging 3-D integrated circuitry — a highly promising technology that could satisfy users’ thirst for more computing power.
With 3-D circuitry, computer chips literally are stacked atop one another and not spread over a circuit board, saving space in electronic devices and instruments. Interconnects link each level to its adjacent neighbors, much like how elevators connect one floor to the next in a skyscraper. With shorter wiring linking the chips, data moves both horizontally and vertically, improving bandwidth, computational speed and performance, all while consuming less power.
Because not all the chips are in contact with the printed circuit board, traditional cooling techniques wouldn’t work well with 3-D circuitry, Robinson said, adding he began his research with NASA support to assure that the agency could take advantage of 3-D circuitry when it became available. “However, we can remove the heat by flowing a coolant through these tiny embedded channels.”
Testing Effectiveness in Microgravity
Although Robinson has tested his cooling technology at various orientations in a laboratory, the question is whether it would be equally effective in space. “What we need to determine is how small the channels must be to achieve gravity independence. Right now, we don’t have a perfect understanding,” he said.
Should the microgap technology succeed during the demonstration, the next step would be to find an actual application and demonstrate it in space, Swanson said.
Through the Flight Opportunities program, the Space Technology Mission Directorate (STMD) selects promising technologies from industry, academia and government for testing on commercial launch vehicles. The program is funded by STMD, and managed at NASA's Armstrong Flight Research Center in Edwards, California.
STMD is responsible for developing the crosscutting, pioneering, new technologies and capabilities needed by the agency to achieve its current and future missions.
Testimonial
"Your magazines are a great platform for people to exchange knowledge. Thank you for the work that you do."
Simon Khesin - Schmoll MaschinenSuggested Items
SMT007 Magazine November 2025: Inside Mexico’s Rise as an Electronics Manufacturing Leader
11/03/2025 | I-Connect007 Editorial TeamMexico isn’t just part of the electronics manufacturing conversation—it’s leading it. From growing investments to cross-border collaborations, Mexico is fast becoming the center of electronics in North America. In this issue, we uncover why Mexico is earning global recognition. From top-ranked manufacturing capabilities to expanding partnerships that reach far beyond the U.S.
Henger Microelectronics Expands Global Footprint with Major Equipment Shipment to Southeast Asia
10/31/2025 |Henger Microelectronics has reached a major milestone in its global expansion strategy with the successful shipment of advanced plasma etching and cleaning systems, along with automation equipment, to multiple countries and regions across Southeast Asia. This achievement marks a significant step forward in the company’s international growth and reinforces its position as a leading force in the global plasma equipment industry.
TTCI Brings Hands-On Test Engineering and IPC Training Expertise to PCB Carolina 2025
10/31/2025 | The Test Connection Inc.The Test Connection Inc. (TTCI), a trusted provider of electronic test and manufacturing solutions, and The Training Connection LLC (TTC-LLC) will exhibit at PCB Carolina on Wednesday, November 12, 2025, at the McKimmon Center at NC State University in Raleigh, North Carolina. Attendees can visit Table 4 to say hello to Bert Horner and Bill Graver, and learn more about their test engineering services and technical training programs.
Cephia Secures $4M Seed Funding to Revolutionize Multimodal Sensing with Metasurface Technology
10/31/2025 | PRNewswireCephia, a startup building products using advanced AI computational imaging technologies and silicon sensors made from advanced metamaterials, formally launched with several pilot customers and $4 million in seed venture capital funding.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
10/31/2025 | Nolan Johnson, I-Connect007Last week, the IMPACT conference took place in Taipei, bringing together advanced packaging experts from around the globe to share their knowledge. We’ll be bringing you post-conference coverage over the next few weeks, so look for that in our newsletters, and in the Advanced Electronic Packaging Digest. Other news seemed to have the U.S. at the center of the global discussions. My picks start in Phoenix, where TSMC, NVIDIA, and Amkor are all scrambling to establish new capabilities. There’s nothing like a strong demand signal to cause build-out, and AI chips are doing exactly that.