Sharing the Workplace with Robots?
May 22, 2018 | CORDISEstimated reading time: 2 minutes
At one time only encountered in science fiction, interaction between humans and robots has attracted quite a bit of attention over the past few years. As technology advances, people are becoming more exposed to robots in their daily lives. Such exposure isn’t only limited to robotic toys and household appliances like robot vacuum cleaners. It’s also occurring in the workplace as these machines take on roles that free humans from dangerous and repetitive jobs. Further increasing the frequency of human-robot interaction (HRI), robots are being developed for use in areas such as education, the hospitality industry, eldercare, rehabilitation and robot-assisted therapy.
Human safety is a primary concern in HRI. When there is physical contact between humans and robots, dangerous collisions are likely. With partial support from two EU grants for the projects ILIAD and SoftPro, researchers from the German Aerospace Centre and Leibniz Universität Hannover teamed up to create a tool that helps robot developers analyse the safety performance of their robot designs. Their novel tool, called a ‘safety map’, is described in their paper published in ‘IEEE Xplore’.
Pointing the Way to Robot Safety
In previous work analysing robot safety, the team had linked a robot’s collision behaviour to human injury data. Having advanced this idea, they now compare entire robot designs (i.e. the mass and velocity range of the robot’s entire workspace or task-dependent subspaces) to human injury data. The injury data may come from different types of experiments and disciplines, and can take into account different body parts. It also considers whether the impact surface in a collision is blunt, sharp or edged, and whether the collision itself is constrained or unconstrained. This information is represented in a unified manner, referred to as a ‘safety map’.
The ‘safety map’ helps users to determine if the robot they are designing is capable of inflicting specific injuries during unexpected collisions. They can also pinpoint the most dangerous areas in the robot’s workspace and compare their robot with others in terms of safety characteristics.
As a result, designers have clear information at their fingertips about the injuries most likely to occur during operation. This helps to guide the hardware design process, and also contributes to safe control and motion planning for the robot being designed.
The researchers tested their map with two robots, the PUMA 560 and the KUKA Lightweight Robot IV+. The injury data they used for the experiment originated from 50 years of biomechanics injury research.
The map is likely the first global dynamic and exact safety analysis tool for robot manipulators. It has the potential to trigger significant changes in the way human-friendly robots are designed in the future.
ILIAD (Intra-Logistics with Integrated Automatic Deployment: safe and scalable fleets in shared spaces) is developing innovative robotic solutions for current warehouse facilities. The creation of a large injury safety database forms part of its efforts to ensure safe robot operation in environments shared with humans.
SoftPro (Synergy-based Open-source Foundations and Technologies for Prosthetics and RehabilitatiOn) is studying and designing soft synergy-based robotics technologies to develop new prostheses, exoskeletons and assistive devices for upper limb rehabilitation. It aims to create end products that are affordable, available, usable and economically viable.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Nortech Systems Achieves Enhanced Fiber Optic Performance
09/16/2025 | Nortech SystemsNortech Systems Incorporated, a leading provider of design and manufacturing solutions for complex electromedical devices and electromechanical systems, announced significant advancements in its fiber optic capabilities.
Altair, Wichita State University’s NIAR Sign MoU to Accelerate Aerospace Innovation
09/16/2025 | AltairAltair, a global leader in computational intelligence, and Wichita State University’s (WSU) National Institute for Aviation Research (NIAR), one of the world’s leading aerospace research institutions, have signed a memorandum of understanding (MoU) to advance innovation across the aerospace and defense industries.
India’s Aerospace and Defence Engineered for Power, Driven by Electronics
09/16/2025 | Gaurab Majumdar, Global Electronics AssociationWith a defence budget of $82.05 billion (2025–26) and a massive $223 billion earmarked for aerospace and defence spending over the next decade, India is rapidly positioning itself as a major player in the global defence and aerospace market.
Honeywell-Led Consortium Receives UK Government Funding to Revolutionize Aerospace Manufacturing
09/02/2025 | HoneywellA consortium led by Honeywell has received UK Government funding for a project that aims to revolutionize how critical aerospace technologies are manufactured in the UK through the use of AI and additive manufacturing.
Coherent Announces Agreement to Sell Aerospace and Defense Business to Advent for $400 Million
08/15/2025 | AdventCoherent Corp., a global leader in photonics, today announced that it has entered into a definitive agreement to sell its Aerospace and Defense business to Advent, a leading global private equity investor, for $400 million. Proceeds will be used to reduce debt, which will be immediately accretive to Coherent’s EPS.