Leveraging Imperfections to Create Better-Behaved Quantum Dots
May 23, 2018 | University of Wisconsin-MadisonEstimated reading time: 2 minutes

Potentially paving the way toward advanced computers, lasers or optical devices, University of Wisconsin-Madison researchers have revealed new effects in tiny electronic devices called quantum dots.
Image caption: Postdoctoral scholar Anastasios Pateras adjust an X-Ray instrument used to detect previously unknown defects in quantum dots. Photo credit: Sam Million-Weaver.
The researchers developed and applied analysis methods that will help answer other challenging questions for developing electronic materials.
“We can now look at a set of structures that people couldn’t look at before,” says Paul Evans, professor of materials science and engineering at UW-Madison. “In these structures, there are new sets of crucial materials problems that we previously weren’t able to think about solving.”
The structures Evans and colleagues looked at are thousands of times narrower than single sheets of paper, and smaller than the dimensions of individual human cells. In those structures, quantum dots form inside very thin stacks of crystalline materials topped by an asymmetrical arrangement of flat, spindly, fingerlike metallic electrodes. Between the tips of those metallic fingers are small spaces that contain quantum dots.
Creating such precise structures and peering inside those tiny spaces is technically challenging, however, and quantum dots don’t always behave as expected.
Previous work by Evans’ collaborators at the Delft University of Technology in the Netherlands, who created and extensively studied the crystal stack structures, led to suspicions that the quantum dots were different in important ways from what had been designed.
Until now, measuring those differences wasn’t possible.“Previous imaging approaches and the modeling weren’t allowing people to structurally characterize quantum dot devices at this tiny scale,” says Anastasios Pateras, a postdoctoral scholar in Evans’ group and the paper’s first author.
Pateras and colleagues pioneered a strategy for using beams of very tightly focused X-rays to characterize the quantum dot devices—and that hinged on a new method for interpreting how the X-rays scattered. Using their approach, they observed shifts in the spacing and orientation of atomic layers within the quantum dots.
“Quantum dots need to be close to perfect,” says Evans. “This small deviation from perfection is important.”
The team’s discovery indicates that the process of creating the quantum dots—laying down metallic electrodes atop a lab-grown crystal—distorts the material underneath slightly. This puckering creates strain in the material, leading to small distortions in the quantum dots. Understanding and exploiting this effect could help researchers create better-behaved quantum dots.
“Once you know these quantities, then you can design devices that take into account that structure,” says Evans.
Designs with those small imperfections in mind will be especially important for future devices where many thousands of quantum dots must all work together.
“This is going to be very relevant because, right now, there are multiple sources of decoherence quantum dots,” says Pateras.
The researchers now are developing an algorithm to automatically visualize atomic positions in crystals from X-ray scattering patterns, given that performing the necessary calculations by hand would likely be too time-consuming. Additionally, they are exploring how the techniques could add insight to other hard-to study structures.
Suggested Items
Key Insights on Photoresist for Defect Reduction
05/21/2025 | I-Connect007 Editorial TeamIn PCB manufacturing, understanding the intricacies of the photoresist process is crucial for achieving high-quality results. Industry experts Josh Krick, a technical service engineer at IEC, and Tim Blair, a PCB imaging specialist at Tim Blair LLC, share their knowledge on the essential stages of photoresist application, highlight critical advancements in materials, and discuss common defects encountered during production. They share best practices and innovative solutions to enhance the manufacturing process, reduce defects, and ensure efficiency and reliability in high-tech applications.
NXP Unveils Third-Generation Imaging Radar Processors for Level 2+ to 4 Autonomous Driving
05/09/2025 | NXP SemiconductorNXP Semiconductors N.V. unveiled its new S32R47 imaging radar processors in 16 nm FinFET technology, building on NXP’s proven expertise in the imaging radar space.
SEMICON Europa 2025 Call for Abstracts Opens for Advanced Packaging Conference and MEMS & Imaging Summit
05/05/2025 | SEMISEMI Europe announced the opening of the call for abstracts for SEMICON Europa 2025, to be held November 18-21 at Messe München in Munich, Germany. Selected speakers will share their expertise at the Advanced Packaging Conference (APC), MEMS & Imaging Sensors Summit, and during presentations on the show floor.
Summit Interconnect Hollister Elevates PCB Prototyping with New TiTAN Direct Imaging System from Technica USA
05/01/2025 | Summit Interconnect, Inc.Summit Interconnect’s Hollister facility has recently enhanced its quick-turn PCB prototyping capabilities by installing the TiTAN PSR-H Direct Imaging (DI) system.
New High Power 3D AXI for Power Electronics from Test Research, Inc.
04/17/2025 | TRITest Research, Inc. (TRI), a leading provider of Test and Inspection solutions for the electronics manufacturing industry, proudly announces the launch of the 3D AXI TR7600HP system. Designed for power semiconductor inspection, the TR7600HP enhances accuracy and efficiency in detecting defects in components such as IGBTs, MOSFETs, SiC inverters, and Paladin Connectors.