Ingestible 'Bacteria on a Chip' Could Help Diagnose Disease
May 29, 2018 | MITEstimated reading time: 4 minutes
Diagnosing Disease
The researchers tested the ingestible sensor in pigs and showed that it could correctly determine whether any blood was present in the stomach. They anticipate that this type of sensor could be either deployed for one-time use or designed to remain the digestive tract for several days or weeks, sending continuous signals.
Currently, if patients are suspected to be bleeding from a gastric ulcer, they have to undergo an endoscopy to diagnose the problem, which often requires the patient to be sedated.
“The goal with this sensor is that you would be able to circumvent an unnecessary procedure by just ingesting the capsule, and within a relatively short period of time you would know whether or not there was a bleeding event,” Mimee says.
To help move the technology toward patient use, the researchers plan to reduce the size of the sensor and to study how long the bacteria cells can survive in the digestive tract. They also hope to develop sensors for gastrointestinal conditions other than bleeding.
In the Science paper, the researchers adapted previously described sensors for two other molecules, which they have not yet tested in animals. One of the sensors detects a sulfur-containing ion called thiosulfate, which is linked to inflammation and could be used to monitor patients with Crohn’s disease or other inflammatory conditions. The other detects a bacterial signaling molecule called AHL, which can serve as a marker for gastrointestinal infections because different types of bacteria produce slightly different versions of the molecule.
“Most of the work we did in the paper was related to blood, but conceivably you could engineer bacteria to sense anything and produce light in response to that,” Mimee says. “Anyone who is trying to engineer bacteria to sense a molecule related to disease could slot it into one of those wells, and it would be ready to go.”
The researchers say the sensors could also be designed to carry multiple strains of bacteria, allowing them to diagnose a variety of conditions.
“Right now, we have four detection sites, but if you could extend it to 16 or 256, then you could have multiple different types of cells and be able to read them all out in parallel, enabling more high-throughput screening,” Nadeau says.
The research was funded by Texas Instruments, the Hong Kong Innovation and Technology Fund, the Office of Naval Research, the National Science Foundation, the Center for Microbiome Informatics and Therapeutics, Brigham and Women’s Hospital, a Qualcomm Innovation Fellowship, and the Natural Sciences and Engineering Council of Canada. Chip fabrication was provided by the TSMC University Shuttle Program.
Page 2 of 2Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Weaning the U.S. Military Off a Tablet Supply Chain That Leads to China
09/08/2025 | Jim Will, USPAETablet computers are essential to how our military fights, moves and sustains, but these devices are built on a fragile global supply chain with strong ties to China. Building domestic manufacturing to eliminate this vulnerability is feasible if we tap into the information and capabilities that already exist and create strong demand for tablets produced by trusted and assured sources.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Semiconductors Get Magnetic Boost with New Method from UCLA Researchers
07/31/2025 | UCLA NewsroomA new method for combining magnetic elements with semiconductors — which are vital materials for computers and other electronic devices — was unveiled by a research team led by the California NanoSystems Institute at UCLA.
Japan’s OHISAMA Project Aims to Beam Solar Power from Space This Year
07/14/2025 | I-Connect007 Editorial TeamJapan could be on the cusp of making history with its OHISAMA project in its quest to become the first country to transmit solar power from space to Earth, The Volt reported.
The Big Picture: Our Big ‘Why’ in the Age of AI
06/25/2025 | Mehul Davé -- Column: The Big PictureWith advanced technology, Tesla, Google, Microsoft, and OpenAI can quickly transform life as we know it. Several notable artificial intelligence (AI) studies, including the 2024 McKinsey Global Survey on AI, have offered insights into AI’s adoption, impact, and trajectory. The McKinsey study revealed that AI adoption continues to grow, with 50% of respondents reporting using AI in at least one business area.