-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueMoving Forward With Confidence
In this issue, we focus on sales and quoting, workforce training, new IPC leadership in the U.S. and Canada, the effects of tariffs, CFX standards, and much more—all designed to provide perspective as you move through the cloud bank of today's shifting economic market.
Intelligent Test and Inspection
Are you ready to explore the cutting-edge advancements shaping the electronics manufacturing industry? The May 2025 issue of SMT007 Magazine is packed with insights, innovations, and expert perspectives that you won’t want to miss.
Do You Have X-ray Vision?
Has X-ray’s time finally come in electronics manufacturing? Join us in this issue of SMT007 Magazine, where we answer this question and others to bring more efficiency to your bottom line.
- Articles
- Columns
- Links
- Media kit
||| MENU - smt007 Magazine
Taming Tornadoes at the Nanoscale
June 15, 2018 | Argonne National LaboratoryEstimated reading time: 4 minutes

Superconductors contain arrays of tiny tornadoes of supercurrent, called vortex filaments, each carrying a single quantum of magnetic field. The motion of these tiny tornadoes leads to resistance and furthermore determines the electrical response of all applied superconducting materials.
But a magnet-controlled “switch” that can reconfigure the array of vortex filaments in a superconductor could provide unprecedented flexibility in managing the superconductor’s electrical properties.
The new dynamic system, developed by scientists at the University of Notre Dame and the U.S. Department of Energy’s (DOE) Argonne National Laboratory, enables in situ adjustments of the vortex filaments, thereby altering the material’s properties directly. The new system may lead to applications in superconducting microelectronics and computing with vortex bits. The scientists announced their findings in a paper published on June 11 in Nature Nanotechnology.
“We work on fundamental aspects of superconductivity with an eye towards novel and better applications,” said Boldizsár Jankó, a Notre Dame professor of physics. “One of the major problems in superconductor technology is that most of them have these filaments, these tiny tornadoes of supercurrent. When these move, then you have resistance.”
Researchers have been trying to design new devices and technologies to “pin,” or fasten, these filaments to a specified position. Previous efforts to pin the filaments, such as irradiating or drilling holes in the superconductor, resulted in static, unchangeable arrays, or fixed, ordered arrangements of filaments.
“In a paper published in the May 20, 2016, issue of Science, we introduced a newly designed array of nanomagnets that can not only mimic the magnetic charge distribution of an artificial square spin ice structure, but also allow unprecedented control over the magnetic charge locations via local and external magnetic fields,” said the article’s lead author, Yonglei Wang, a resident associate in Argonne’s Materials Science division, who is affiliated with Notre Dame and Nanjing University.
(Spin is a particle’s natural angular momentum. The structures are called “ice” because they involve patterned atomic spins, two pointing in and two pointing out at the vertex of a square spin lattice, analogous to the “two-in, two-out” Pauling’s ice rule that determines the proton positional ordering in water ice.)
Building upon this work, a bilayer structure consisting of an artificial spin ice nanomagnet array atop a superconducting film was fabricated using capabilities at the Center for Nanoscale Materials (CNM), a DOE Office of Science User Facility at Argonne, in collaboration with CNM scientists.
The stray magnetic fields emanating from the ends of the bar-shaped nanomagnets can attract and/or repel the underlying vortex filaments in the superconductor. Reconfiguring the magnetic orientations of these nanobar magnets with an external in-plane magnetic field results in a real-time rearrangement of the “magnetically pinned” vortex filaments in the superconductor. This makes possible multiple, reversible spin cycle configurations for the vortices.
The research team showed that such control over magnetic changes can be exploited in controlling the array of vortices in the superconductor spin ice material, ranging from ordered to disordered and frustrated lattices. (In this context, frustration refers to an important phenomenon in magnetism related to the arrangement of spins.)
“We can imagine there are many different patterns of the nanomagnets that one can create. Each of those different patterns will lead to a different behavior,” said Argonne Distinguished Fellow Wai-Kwong Kwok, who is a co-author of the Nature Nanotechnology paper.
“It’s a nice, versatile platform that can conceivably be used to tweak and to tune other electronic or magnetic systems,” said Zhili Xiao, who is also a co-author of the paper and a professor at Northern Illinois University.
Wang attributed the project’s success to the close collaboration between experimentalists and theorists. The experimentalists could not directly “see” the moving vortices responsible for the measured electron behavior of the superconductor in the laboratory. To overcome this challenge, co-author Xiaoyu Ma, a doctoral student in physics at Notre Dame, carried out computer simulations that created “movies” elucidating the vortex motion influenced by the nanomagnet arrays. The simulations successfully reproduced Argonne’s experimental results with high consistency.
The research is expected to provide a new setting at the nanoscale for the design and manipulation of geometric order and frustration in a wide variety of material systems. These include magnetic skyrmions, two-dimensional materials, topological insulators/semimetals and colloids in soft materials.
The DOE Office of Science, Basic Energy Sciences, along with the National Science Foundation provided funding for this project.
About Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.
About U.S. Department of Energy's Office of Science
The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.
Suggested Items
Excellon Installs COBRA Hybrid Laser at Innovative Circuits
06/23/2025 | ExcellonExcellon is pleased to announce the successful installation of a second COBRA Hybrid Laser System at Innovative Circuits, located in Alpharetta, Georgia. The Excellon COBRA Hybrid Laser System uniquely combines both UV and CO₂ (IR) laser sources on a single platform—making it ideal for high-density prototype and production printed circuit boards (PCBs).
Gorilla Circuits Elevates PCB Precision with Schmoll’s Optiflex II Alignment System
06/23/2025 | Schmoll MaschinenGorilla Circuits, a leading PCB manufacturer based in Silicon Valley, has enhanced its production capabilities with the addition of Schmoll Maschinen’s Optiflex II Post-Etch Punch system—bringing a new level of precision to multilayer board fabrication.
The Evolution of Picosecond Laser Drilling
06/19/2025 | Marcy LaRont, PCB007 MagazineIs it hard to imagine a single laser pulse reduced not only from nanoseconds to picoseconds in its pulse duration, but even to femtoseconds? Well, buckle up because it seems we are there. In this interview, Dr. Stefan Rung, technical director of laser machines at Schmoll Maschinen GmbH, traces the technology trajectory of the laser drill from the CO2 laser to cutting-edge picosecond and hybrid laser drilling systems, highlighting the benefits and limitations of each method, and demonstrating how laser innovations are shaping the future of PCB fabrication.
Sierra Circuits Boosts High Precision PCB Manufacturing with Schmoll Technology
06/16/2025 | Schmoll MaschinenSierra Circuits has seen increased success in production of multilayer HDI boards and high-speed signal architectures through the integration of a range of Schmoll Maschinen systems. The company’s current setup includes four MXY-6 drilling machines, two LM2 routing models, and a semi-automatic Optiflex II innerlayer punch.
Driving Innovation: Traceability in PCB Production
05/29/2025 | Kurt Palmer -- Column: Driving InnovationTraceability across the entire printed circuit board production process is an increasingly important topic among established manufacturers and companies considering new PCB facilities. The reasons are apparent: Automatic loading of part programs, connection with MES systems and collection of production data, and compliance with Industry 4.0 requirements