How Smart Technology Gadgets Can Avoid Speed Limits
June 28, 2018 | CHALMERS UNIVERSITY OF TECHNOLOGYEstimated reading time: 2 minutes

Speed limits apply not only to traffic. There are limitations on the control of light as well, in optical switches for internet traffic, for example. Physicists at Chalmers University of Technology now understand why it is not possible to increase the speed beyond a certain limit – and know the circumstances in which it is best to opt for a different route.
Image caption: Researchers at Chalmers University of Technology have discovered why there is a speed limit on how fast the properties of light can be changed with the help of specially designed materials. This new understanding can point the way forward for the next generation of consumer electronics, such as smart watches, screens and glasses. Illustration: Sophie Viaene and Vincent Ginis
Light and other electromagnetic waves play a crucial role in almost all modern electronics, for example in our mobile phones. In recent years researchers have developed artificial speciality materials – known as optomechanical metamaterials – which overcome the limitations inherent in natural materials in order to control the properties of light with a high degree of precision. For example, what are termed optical switches are used to change the colour or intensity of light. In internet traffic these switches can be switched on and off up to 100 billion times in a single second. But beyond that, the speed cannot be increased any further. These unique speciality materials are also subject to this limit.
“Researchers had high hopes of achieving higher and higher speeds in optical switches by further developing optomechanical metamaterials. We now know why these materials failed to outcompete existing technology in internet traffic and mobile communication networks,” says Sophie Viaene, a nanophotonics researcher at the Department of Physics at Chalmers.
To find out why there are speed limits and what they mean, Viaene went outside the field of optics and analysed the phenomenon using what is termed non-linear dynamics in her doctoral thesis. The conclusion she reached is that it is necessary to choose a different route to circumvent the speed limits: instead of controlling an entire surface at once, the interaction with light can be controlled more efficiently by manipulating one particle at a time. Another way of solving the problem is to allow the speciality material to remain in constant motion at a constant speed and to measure the variations from this movement.
But Viaene and her supervisor, Associate Professor Philippe Tassin, say that the speed limit does not pose a problem for all applications. It is not necessary to change the properties of light at such high speeds for screens and various types of displays. So there is great potential for the use of these speciality materials here since they are thin and can be flexible.
Their results have determined the direction researchers should take in this area of research and their scientific article was recently published in the highly regarded journal Physical Review Letters. The pathway is now open for the ever smarter watches, screens and glasses of the future.
“The switching speed limit is not a problem in applications where we see the light, because our eyes do not react all that rapidly. We see a great potential for optomechanical metamaterials in the development of thin, flexible gadgets for interactive visualisation technology,” says Philippe Tassin, an associate professor at the Department of Physics at Chalmers.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Circus SE Set for High-Volume Market Entry in the Defense Sector
10/17/2025 | BUSINESS WIRECircus SE a global technology leader in AI robotics for autonomous nutrition systems and troop supply, is expanding its global production network as part of its high-volume market entry into the defense sector.
China Expands Rare Earth Export Restrictions, Tightening Grip on Global Supply Chains
10/16/2025 | I-Connect007 Editorial TeamChina sharply expanded its rare earth export restrictions on Oct. 9, adding additional elements and refining technologies to its control list while imposing stricter rules on foreign users in the defense and semiconductor industries.
SAMI Advanced Electronics Company Launches “Remal” Computer Manufacturing Project in Partnership with HP and Foxconn
10/15/2025 | SAMI-AECSAMI Advanced Electronics Company (SAMI-AEC), a wholly owned subsidiary of Saudi Arabian Military Industries (SAMI), proudly announced the launch of the “Remal” project for computer manufacturing, in strategic partnership with HP and Foxconn.
The Right Approach: Electro-Tek—A Williams Family Legacy, Part 1
10/15/2025 | Steve Williams -- Column: The Right ApproachThere is no bronze bust in the lobby or portrait in the conference room of Electro-Tek's founder—my Dad, Charles “Chuck” Williams—so with the facility closing last year after 56 years, I feel it is time to tell the story. Chuck Williams founded Electro-Tek in 1968 in our basement, eventually moving into the second floor of an old 1913 building in downtown Milwaukee that is still standing (the first of three eventual facilities).
LPKF Joins productronica’s 50th Anniversary, Showcasing Laser Technology for Electronics Manufacturing
10/10/2025 | LPKF Laser & ElectronicsLPKF Laser & Electronics invites visitors to productronica 2025 in Munich from November 18 to 21. At booth 305 in hall B2, the company will present its portfolio of modern laser technologies for the electronics industry live – from prototyping systems and high-performance depaneling to laser plastic welding for electronic housings and thin glass processing for advanced packaging.