How Smart Technology Gadgets Can Avoid Speed Limits
June 28, 2018 | CHALMERS UNIVERSITY OF TECHNOLOGYEstimated reading time: 2 minutes

Speed limits apply not only to traffic. There are limitations on the control of light as well, in optical switches for internet traffic, for example. Physicists at Chalmers University of Technology now understand why it is not possible to increase the speed beyond a certain limit – and know the circumstances in which it is best to opt for a different route.
Image caption: Researchers at Chalmers University of Technology have discovered why there is a speed limit on how fast the properties of light can be changed with the help of specially designed materials. This new understanding can point the way forward for the next generation of consumer electronics, such as smart watches, screens and glasses. Illustration: Sophie Viaene and Vincent Ginis
Light and other electromagnetic waves play a crucial role in almost all modern electronics, for example in our mobile phones. In recent years researchers have developed artificial speciality materials – known as optomechanical metamaterials – which overcome the limitations inherent in natural materials in order to control the properties of light with a high degree of precision. For example, what are termed optical switches are used to change the colour or intensity of light. In internet traffic these switches can be switched on and off up to 100 billion times in a single second. But beyond that, the speed cannot be increased any further. These unique speciality materials are also subject to this limit.
“Researchers had high hopes of achieving higher and higher speeds in optical switches by further developing optomechanical metamaterials. We now know why these materials failed to outcompete existing technology in internet traffic and mobile communication networks,” says Sophie Viaene, a nanophotonics researcher at the Department of Physics at Chalmers.
To find out why there are speed limits and what they mean, Viaene went outside the field of optics and analysed the phenomenon using what is termed non-linear dynamics in her doctoral thesis. The conclusion she reached is that it is necessary to choose a different route to circumvent the speed limits: instead of controlling an entire surface at once, the interaction with light can be controlled more efficiently by manipulating one particle at a time. Another way of solving the problem is to allow the speciality material to remain in constant motion at a constant speed and to measure the variations from this movement.
But Viaene and her supervisor, Associate Professor Philippe Tassin, say that the speed limit does not pose a problem for all applications. It is not necessary to change the properties of light at such high speeds for screens and various types of displays. So there is great potential for the use of these speciality materials here since they are thin and can be flexible.
Their results have determined the direction researchers should take in this area of research and their scientific article was recently published in the highly regarded journal Physical Review Letters. The pathway is now open for the ever smarter watches, screens and glasses of the future.
“The switching speed limit is not a problem in applications where we see the light, because our eyes do not react all that rapidly. We see a great potential for optomechanical metamaterials in the development of thin, flexible gadgets for interactive visualisation technology,” says Philippe Tassin, an associate professor at the Department of Physics at Chalmers.
Suggested Items
2025 ASEAN IT Spending Growth Slows to 5.9% as AI-Powered IT Expansion Encounters Post-Boom Normalization
06/26/2025 | IDCAccording to the IDC Worldwide Black Book: Live Edition, IT spending across ASEAN is projected to grow by 5.9% in 2025 — down from a robust 15.0% in 2024.
DownStream Acquisition Fits Siemens’ ‘Left-Shift’ Model
06/26/2025 | Andy Shaughnessy, I-Connect007I recently spoke to DownStream Technologies founder Joe Clark about the company’s acquisition by Siemens. We were later joined by A.J. Incorvaia, Siemens’ senior VP of electronic board systems. Joe discussed how he, Rick Almeida, and Ken Tepper launched the company in the months after 9/11 and how the acquisition came about. A.J. provides some background on the acquisition and explains why the companies’ tools are complementary.
United Electronics Corporation Advances Manufacturing Capabilities with Schmoll MDI-ST Imaging Equipment
06/24/2025 | United Electronics CorporationUnited Electronics Corporation has successfully installed the advanced Schmoll MDI-ST (XL) imaging equipment at their advanced printed circuit board facility. This significant technology investment represents a continued commitment to delivering superior products and maintaining their position as an industry leader in precision PCB manufacturing.
Insulectro & Dupont Host Technology Symposium at Silicon Valley Technology Center June 25
06/22/2025 | InsulectroInsulectro, the largest distributor of materials for use in the manufacture of PCBs and printed electronics, and DuPont, a major manufacturer of flex laminates and chemistry, invite fabricators, OEMS, designers, and engineers to attend an Innovation Symposium – Unlock the Power - this Wednesday, June 25, at DuPont’s Silicon Valley Technology Center in Sunnyvale, CA.
OKI, NTT Innovative Devices Establish Mass Production Technology for High-Power Terahertz Devices by Heterogeneous Material Bonding
06/21/2025 | BUSINESS WIREOKI, in collaboration with NTT Innovative Devices Corporation, has established mass production technology for high-power terahertz devices using crystal film bonding (CFB) technology for heterogeneous material bonding to bond indium phosphide (InP)-based uni-traveling carrier photodiodes (UTC-PD) onto silicon carbide (SiC) with excellent heat dissipation characteristics for improved bonding yields.