Thin and Flexible Organic Photovoltaic Devices Engineered to Resist Both Mechanical and Thermal Stress
June 29, 2018 | RIKENEstimated reading time: 2 minutes

A flexible polymer-based solar cell that can be heated up to 120 degrees Celsius without reducing its ability to harvest energy has been developed by a team led by RIKEN researchers. The combination of flexibility and thermal robustness makes it attractive for powering wearable sensors and devices.
Image caption:Photograph of 3-micrometer-thick organic solar cell that was adhered to textile by an instant hot-melt process.
Organic solar cells use conductive, carbon-based polymers instead of rigid silicon to capture sunlight and convert it into electricity. They can thus be attached to irregular backings such as clothing without breaking.
Previously, Kenjiro Fukuda of the RIKEN Center for Emergent Matter Science and his team had encapsulated organic solar cells in other polymers to improve their compatibility with textiles by making them tougher and more water resistant.
However, one problem that still limits the long-term lifetime of flexible solar cells is their poor resistance to temperature changes. Thermal stress can make polymers brittle or cause them to become less conductive through expansion.
Fukuda, with group leader Takao Someya and colleagues from Japan and the United States, overcame this problem and fabricated organic solar cells with enhanced thermal stability by modifying the device’s active layer—a complex, light-absorbing polymer composed of fluorine atoms and sulfur-containing aromatic rings. Adding linear hydrocarbon chains to this molecule triggered the aromatic rings to stack in a ‘face-on’ orientation that boosted the polymer’s crystal strength.
The team replaced the conventional plastic substrates used to support the active layer with transparent polyimides that are mechanically stable over a wide temperature range. To form the polyimide film on a supporting plate, they used a wet-chemistry process, rather than vacuum deposition, since it is more amenable for fabricating large-area films.
But a wet-chemistry process necessitates carefully controlling the substrate’s surface energy: if the substrate is too hydrophobic, the polyimide precursor solution will bead and not form a film, whereas if it is too hydrophilic, the polyimide film will adhere too strongly, making it hard to peel off. The researchers achieved the right surface energy by adjusting the thickness of a hydrophobic layer and treating it with oxygen plasma.
Following a final encapsulation step, they tested the behavior of their solar cell as it was rolled, folded, and crumpled repeatedly at different temperatures. The power conversion efficiencies remained at near-record rates despite the mechanical and thermal stress. This inspired the group to attach the devices to fabrics using ‘hot-melt’ technology developed for the apparel industry.
“The hot-melt process gives almost perfect adhesion of our ultrathin organic solar cells onto textiles, with no degradation in performance,” says Fukuda. “We’re now discussing these results with our collaborators to find a good strategy for commercialization.”
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Sustainability and Selective Soldering
09/15/2025 | Dr. Samuel J. McMaster, Pillarhouse InternationalSustainability is more than just a buzzword for the electronics industry; it’s a key goal for all manufacturing processes. This is more than a box-ticking exercise or simply doing a small part for environmentally friendly processes. Moving toward sustainable solutions drives innovation and operational efficiency.
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
EV Group Achieves Breakthrough in Hybrid Bonding Overlay Control for Chiplet Integration
09/12/2025 | EV GroupEV Group (EVG), a leading provider of innovative process solutions and expertise serving leading-edge and future semiconductor designs and chip integration schemes, today unveiled the EVG®40 D2W—the first dedicated die-to-wafer overlay metrology platform to deliver 100 percent die overlay measurement on 300-mm wafers at high precision and speeds needed for production environments. With up to 15X higher throughput than EVG’s industry benchmark EVG®40 NT2 system designed for hybrid wafer bonding metrology, the new EVG40 D2W enables chipmakers to verify die placement accuracy and take rapid corrective action, improving process control and yield in high-volume manufacturing (HVM).
Integrating Uniplate PLBCu6 With the Digital Factory Suite
09/12/2025 | Giovanni Obino and Andreas Schatz, MKS' AtotechPrinted circuit board manufacturing is rapidly changing, driven by miniaturization, stringent reliability requirements, and growing pressure for sustainable production. Meeting these challenges requires more than incremental improvements; it demands a combination of precise equipment and real-time process intelligence. The pairing of Uniplate® PLBCu6 with the Digital Factory Suite (DFS) demonstrates how hardware and software can work together to create more responsive, resource-efficient manufacturing.
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.