Next-Generation Robotic Cockroach Can Explore Underwater Environments
July 2, 2018 | Harvard John A. Paulson School of Engineering and Applied SciencesEstimated reading time: 3 minutes

In nature, cockroaches can survive underwater for up to 30 minutes. Now, a robotic cockroach can do even better. Harvard’s Ambulatory Microrobot, known as HAMR, can walk on land, swim on the surface of water, and walk underwater for as long as necessary, opening up new environments for this little bot to explore.
This next generation HAMR uses multifunctional foot pads that rely on surface tension and surface tension induced buoyancy when HAMR needs to swim but can also apply a voltage to break the water surface when HAMR needs to sink. This process is called electrowetting, which is the reduction of the contact angle between a material and the water surface under an applied voltage. This change of contact angle makes it easier for objects to break the water surface.
Moving on the surface of water allows a microrobot to evade submerged obstacles and reduces drag. Using four pairs of asymmetric flaps and custom designed swimming gaits, HAMR robo-paddles on the water surface to swim. Exploiting the unsteady interaction between the robot’s passive flaps and the surrounding water, the robot generates swimming gaits similar to that of a diving beetle. This allows the robot to effectively swim forward and turn.
“This research demonstrates that microrobotics can leverage small-scale physics — in this case surface tension — to perform functions and capabilities that are challenging for larger robots," said Kevin Chen, a postdoctoral fellow at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and first author of the paper.
“HAMR’s size is key to its performance,” said Neel Doshi, graduate student at SEAS and co-author of the paper. “If it were much bigger, it would be challenging to support the robot with surface tension and if it were much smaller, the robot might not be able to generate enough force to break it.”
HAMR weighs 1.65 grams (about as much as a large paper clip), can carry 1.44 grams of additional payload without sinking and can paddle its legs with a frequency up to 10 Hz. It’s coated in Parylene to keep it from shorting under water.
Once below the surface of the water, HAMR uses the same gait to walk as it does on dry land and is just as mobile. To return to dry land HAMR faces enormous challenge from the water’s hold. A water surface tension force that is twice the robot weight pushes down on the robot, and in addition the induced torque causes a dramatic increase of friction on the robot’s hind legs. The researchers stiffened the robot’s transmission and installed soft pads to the robot’s front legs to increase payload capacity and redistribute friction during climbing. Finally, walking up a modest incline, the robot is able break out of the water’s hold.
“This robot nicely illustrates some of the challenges and opportunities with small-scale robots,” said senior author Robert Wood, Charles River Professor of Engineering and Applied Sciences at SEAS and core faculty member of the Harvard Wyss Institute for Biologically Inspired Engineering. “Shrinking brings opportunities for increased mobility – such as walking on the surface of water – but also challenges since the forces that we take for granted at larger scales can start to dominate at the size of an insect.”
Next, the researchers hope to further improve HAMR’s locomotion and find a way to return to land without a ramp, perhaps incorporating gecko-inspired adhesives or impulsive jumping mechanisms.
This research was co-authored by Benjamin Goldberg and Hongqiang Wang. It was supported by the Harvard John A. Paulson School of Engineering and Applied Science, the Wyss Institute for Biologically Inspired Engineering and the Office of Naval Research’s Defense University Research Instrumentation Program
Testimonial
"Your magazines are a great platform for people to exchange knowledge. Thank you for the work that you do."
Simon Khesin - Schmoll MaschinenSuggested Items
Zuken Announces ZIW Americas 2026 in Dallas
10/21/2025 | ZukenZuken USA, Inc., a global leader in electrical and electronic design automation, announced Zuken Innovation World (ZIW) Americas 2026, the company’s premier global conference dedicated to advancing the future of electrical and electronic product design. ZIW 2026 will be held June 9-11 in Dallas, Texas.
Keysight Completes Acquisition of Synopsys’ Optical Solutions Group and Ansys’ PowerArtist
10/17/2025 | Keysight Technologies, Inc.Keysight Technologies, Inc., announced the completion of its acquisitions of the Optical Solutions Group from Synopsys, Inc., and PowerArtist from Ansys, Inc.
New Fil Arzola Class: Designing for the Future, and for Sustainability
10/07/2025 | Andy Shaughnessy, I-Connect007If you have not yet taken a class from Fil Arzola, you are missing out. In late October, Fil will be teaching the class "Building Sustainable Model-Based PCBs," speaking from the design perspective. I had the pleasure of catching this course at last year's IPC APEX EXPO, and I walked away with a lot to think about. I asked Fil to discuss his upcoming course. Registration is open now.
Happy’s Tech Talk #43: Engineering Statistics Training With Free Software
10/06/2025 | Happy Holden -- Column: Happy’s Tech TalkIn over 50 years as a PCB process engineer, the one skill I acquired in college that has been most beneficial is engineering statistics. Basic statistics was part of my engineering fundamentals classes, but I petitioned the dean to let me take the engineering statistics graduate course because I was creating a senior thesis for my honors focus and needed more training on Design of Experiments (DOE).
Looking to Reduce Your Consumables Spend? Visit ROCKA Solutions at SMTA International
09/29/2025 | ROCKA SolutionsROCKA Solutions, a trusted North American manufacturer and distributor of high-quality consumables for the electronics manufacturing industry, is pleased to announce its participation at SMTA International 2025, taking place October 19–23, 2025, at the Donald E. Stephens Convention Center in Rosemont, Illinois. Attendees can connect with the ROCKA team at Booth #2413.