Scientists Fine-tune Carbon Nanotubes for Flexible, Fingertip-wearable Terahertz Imagers
July 3, 2018 | Tokyo Institute of TechnologyEstimated reading time: 2 minutes
Researchers at Tokyo Tech have developed flexible terahertz imagers based on chemically "tunable" carbon nanotube materials. The findings expand the scope of terahertz applications to include wrap-around, wearable technologies as well as large-area photonic devices.
Figure 1. The CNT-based flexible THz imager
(a) Resting on a fingertip, the CNT THz imager can easily wrap around curved surfaces. (b) Just by inserting and rotating a flexible THz imager attached to the fingertip, damage to a pipe was clearly detected.
Carbon nanotubes (CNTs) are beginning to take the electronics world by storm, and now their use in terahertz (THz) technologies has taken a big step forward.
Due to their excellent conductivity and unique physical properties, CNTs are an attractive option for next-generation electronic devices. One of the most promising developments is their application in THz devices. Increasingly, THz imagers are emerging as a safe and viable alternative to conventional imaging systems across a wide range of applications, from airport security, food inspection and art authentication to medical and environmental sensing technologies.
The demand for THz detectors that can deliver real-time imaging for a broad range of industrial applications has spurred research into low-cost, flexible THz imaging systems. Yukio Kawano of the Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Tech, is a world-renowned expert in this field. In 2016, for example, he announced the development of wearable terahertz technologies based on multiarrayed carbon nanotubes.
Kawano and his team have since been investigating THz detection performance for various types of CNT materials, in recognition of the fact that there is plenty of room for improvement to meet the needs of industrial-scale applications.
Now, they report the development of flexible THz imagers for CNT films that can be fine-tuned to maximize THz detector performance.
Publishing their findings in ACS Applied Nano Materials, the new THz imagers are based on chemically adjustable semiconducting CNT films.
By making use of a technology known as ionic liquid gating1, the researchers demonstrated that they could obtain a high degree of control over key factors related to THz detector performance for a CNT film with a thickness of 30 micrometers. This level of thickness was important to ensure that the imagers would maintain their free-standing shape and flexibility, as shown in Figure 1.
"Additionally," the team says, "we developed gate-free Fermi-level2 tuning based on variable-concentration dopant solutions and fabricated a Fermi-level-tuned p-n junction3 CNT THz imager." In experiments using this new type of imager, the researchers achieved successful visualization of a metal paper clip inside a standard envelope (see Figure 2.)
Figure 2. Non-contact, non-destructive visualization
The CNT THz imager enabled clear, non-destructive visualization of a metal paper clip inside an envelope.
The bendability of the new THz imager and the possibility of even further fine-tuning will expand the range of CNT-based devices that could be developed in the near future.
Moreover, low-cost fabrication methods such as inkjet coating could make large-area THz imaging devices more readily available.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
OE-A Business Climate Survey: Solid Growth for the Flexible and Printed Electronics Industry
10/21/2025 | OE-AFor 2026 the industry has more positive expectations, with a sales forecast of +14 percent, which has even increased slightly compared to the beginning of the year. Further encouraging signs include improved employment prospects. 30 percent of companies plan to increase their workforce in the coming months — up from 10 percent in February.
Elephantech's SustainaCircuits FPC Adopted for Mass Production in OM Digital Solutions’ Interchangeable Lens
10/06/2025 | ElephantechElephantech Inc. is pleased to announce that its proprietary flexible printed circuits (FPCs) have been adopted for mass production by OM Digital Solutions Corporation in the company’s latest flagship products.
Industry Expert, Mark Finstad From Flexible Circuit Technologies Presents Ask the Flexperts at PCB West
09/22/2025 | Flexible Circuit TechnologiesFlexible Circuit Technologies., Inc/FCT is excited to announce its upcoming session, Ask the Flexperts taking place Thursday, October 2nd, from 9:00–11:00 AM at PCB West 2025. The session will be led by Mark Finstad, Director or Applications Engineering at FCT, who brings over 40 years of experience in the design, fabrication, and testing of flexible and rigid-flex circuits. Mark is an internationally recognized authority in the field, making this a must-attend event for PCB designers, engineers, and industry professionals.
Printed Electronics Market Size to Top $83.77 Billion by 2034 Driven by IoT Adoption and Flexible Device Demand
09/11/2025 | Globe NewswireThe printed electronics market size has been calculated at U$19,920 million in 2025 and is expected to grow from $23,58 million in 2026 to approximately $83,770 million by 2034.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.