Ecology and AI
July 11, 2018 | Harvard UniversityEstimated reading time: 3 minutes
It's poised to transform fields from earthquake prediction to cancer detection to self-driving cars, and now scientists are unleashing the power of deep learning on a new field: ecology.
A team of researchers from Harvard, Auburn University, the University of Wyoming, the University of Oxford and the University of Minnesota demonstrated that the artificial intelligence technique can be used to identify animal images captured by motion-sensing cameras.
Using more than three million photographs from the citizen science project Snapshot Serengeti, researchers trained the system to automatically identify, count and describe animals in their natural habitats. Results showed the system was able to automate the process for up to 99.3 percent of images as accurately as human volunteers. The study is described in a June 5 paper published in the Proceedings of the National Academy of Sciences.
Snapshot Serengeti has deployed a large number of "camera traps," or motion-sensitive cameras in Tanzania that collect millions of images of animals in their natural habitat, such as lions, leopards, cheetahs, and elephants.
While the images can offer insight into a host of questions, from how carnivore species co-exist to predator-prey relationships, they are only useful once they have been converted into data that can be processed.
For years, the best method for extracting such information was to ask crowdsourced teams of human volunteers to label each image manually - a laborious and time-consuming process.
"Not only does the artificial intelligence system tell you which of 48 different species of animal is present, it also tells you how many there are and what they are doing. It will tell you if they are eating, sleeping, if babies are present, etc," said Margaret Kosmala, one of the leaders of Snapshot Serengeti and a co-author of the study. "We estimate that the deep learning technology pipeline we describe would save more than 8 years of human labeling effort for each additional 3 million images. That is a lot of valuable volunteer time that can be redeployed to help other projects."
"While there are a number of projects that rely on images captured by camera traps to understand the natural world, few are able to recruit the large numbers of volunteers needed to extract useful data," said Snapshot Serengeti founder Ali Swanson. "The result is that potentially important knowledge remains locked away, out of the reach of scientists.
"Although projects are increasingly turning to citizen science for image classification, we're starting to see it take longer and longer to label each batch of images as the demand for volunteers grows," Swanson added. "We believe deep learning will be key in alleviating the bottleneck for camera trap projects: the effort of converting images into usable data."
A form of computational intelligence loosely inspired by how animal brains see and understand the world, deep learning relies on training neural networks using vast amounts of data. For that process to work, though, the training data must be properly labeled.
"When I told (senior author) Jeff Clune we had 3.2 million labeled images, he stopped in his tracks," said Craig Packer, who heads the Snapshot Serengeti project. "Our citizen scientists have done phenomenal work, but we needed to speed up the process to handle ever greater amounts of data. The deep learning algorithm is amazing and far surpassed my expectations. This is a game changer for wildlife ecology."
Going forward, first-author Mohammad Sadegh Norouzzadeh believes deep learning alogrithms will continue to improve and hopes to see similar systems applied to other ecological data sets.
"Here, we wanted to demonstrate the value of the technology to the wildlife ecology community, but we expect that as more people research how to improve deep learning for this application and publish their datasets, the sky's the limit," he said. "It is exciting to think of all the different ways this technology can help with our important scientific and conservation missions."
"This technology lets us accurately, unobtrusively, and inexpensively collect wildlife data, which could help catalyze the transformation of many fields of ecology, wildlife biology, zoology, conservation biology, and animal behavior into 'big data' sciences," said Jeff Clune, the Harris Associate Professor at the University of Wyoming and a Senior Research Manager at Uber's Artificial Intelligence Labs, and the senior author on the paper. "This will dramatically improve our ability to both study and conserve wildlife and precious ecosystems."
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Advanced Packaging-to-Board-Level Integration: Needs and Challenges
09/15/2025 | Devan Iyer and Matt Kelly, Global Electronics AssociationHPC data center markets now demand components with the highest processing and communication rates (low latencies and high bandwidth, often both simultaneously) and highest capacities with extreme requirements for advanced packaging solutions at both the component level and system level. Insatiable demands have been projected for heterogeneous compute, memory, storage, and data communications. Interconnect has become one of the most important pillars of compute for these systems.
Procense Raises $1.5M in Seed Funding to Accelerate AI-Powered Manufacturing
09/11/2025 | BUSINESS WIREProcense, a San Francisco-based industrial automation startup developing cutting-edge AI and remote sensing technologies for process manufacturers has raised $1.5 million in a seed funding round led by Kevin Mahaffey, Business Insider’s #1 seed investor of 2025 and HighSage Ventures, a Boston-based family office that primarily invests in public and private companies in the global software, internet, consumer, and financial technology sectors.
Zuken Announces E3.series 2026 Release for Accelerated Electrical Design and Enhanced Engineering Productivity
09/10/2025 | ZukenZuken reveals details of the upcoming 2026 release of E3.series, which will introduce powerful new features aimed at streamlining electrical and fluid design, enhancing multi-disciplinary collaboration, and boosting engineering productivity.
AI Infrastructure Boosts Global Semiconductor Revenue Growth to 17.6% in 2025
09/09/2025 | IDCAccording to the Worldwide Semiconduct o r Technology and Supply Chain Intelligence service from International Data Corporation (IDC), worldwide semiconductor revenue is expected to reach $800 billion in 2025, growing 17.6% year-over-year from $680 billion in 2024. This follows a strong rebound in 2024, when revenue grew by 22.4% year-over-year.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
09/05/2025 | Andy Shaughnessy, I-Connect007It’s almost fall here in Atlanta, and that means that the temperature is finally dropping. And it quit raining! It’s been raining since March, and I’m so over it, as the social influencers say. Last night we grilled out on the deck, and it wasn’t hot, and we didn’t get rained on. Life is good. It was a busy week in the industry. In this installment of my must-reads, we say goodbye to Walt Custer, the man who made PCB data points interesting for the rest of us.