A Silicon-Nanoparticle Photonic Waveguide
July 16, 2018 | A*STAREstimated reading time: 2 minutes

A new way to efficiently guide light at tiny scales has been demonstrated by an all-A*STAR team. Their method, which involves lining up silicon nanoparticles, is promising for applications such as light-based integrated circuits, biosensors and quantum communications.
Image caption: Near-field scanning optical microscope (NSOM) measurements have shown that cylindrical silicon nanoparticles arranged in a line can transport light with low loss due to magnetic-field (H-field) resonances between them.
Transporting light on small scales is critical for many applications and is commonly performed using rectangular silicon waveguides — the optical circuit equivalent to wires in electronic circuits. To further shrink devices, metallic nanoparticles have been explored as an alternative, but while they are very good at confining light to small scales, they tend to leak a lot of the light.
Now, Reuben Bakker, Arseniy Kuznetsov and their colleagues at the A*STAR Data Storage Institute have come up with a more efficient method that involves a string of cylindrical silicon nanoparticles. The first nanoparticle is excited using light and then a near-field scanning optical microscope measures the light that reaches another nanoparticle further down the line (see image). When they did this, the team found that the fall in the light intensity was low.
“This is the first experimental demonstration that shows coupled resonators can very efficiently guide light at strongly sub-wavelength dimensions and over lengths of several hundred micrometers,” says Kuznetsov. “It’s the first step toward a completely new approach to silicon photonics.”
The nanoparticles are not in direct contact with each other. Instead, light is transferred to the next particle through magnetic-field resonances. “Each of these particles is a resonant scatterer — so if you take one particle it will scatter light in all directions,” explains Kuznetsov. “But when we line all these particles up, they work as a single waveguide without leaking light.”
One big advantage of using silicon nanoparticles is that they are compatible with the fabrication processes currently used by the semiconductor industry. “You can use the same CMOS processes to do silicon photonics,” says Kuznetsov. “You just change the mask and the layout and add other components without any additional complications.”
Despite having modeled the system and its behavior as a waveguide before performing the measurements, the team were still amazed at how well it worked in practice. “We were surprised it worked so well,” recalls Bakker. “We tweaked the geometries a little bit, but to have them perform so well after just a few iterations was quite unexpected.”
The team has already demonstrated the same concept at telecommunication wavelengths. They are now working on developing various on-chip photonic components based on the concept.
Suggested Items
AEye, LITEON Confirm Production of First Apollo Units from New Manufacturing Line
05/12/2025 | BUSINESS WIREAEye, Inc., a global leader in adaptive, high-performance lidar solutions, announced it has successfully produced the first Apollo lidar sensors from the LITEON manufacturing line in Taipei, Taiwan.
Trouble in Your Tank: Causes of Plating Voids, Pre-electroless Copper
05/09/2025 | Michael Carano -- Column: Trouble in Your TankIn the business of printed circuit fabrication, yield-reducing and costly defects can easily catch even the most seasoned engineers and production personnel off guard. In this month’s column, I’ll investigate copper plating voids with their genesis in the pre-plating process steps.
Manncorp Launches Industry-First 'Build Your Own SMT Line' Tool
05/02/2025 | ManncorpManncorp, a leading supplier of SMT (Surface Mount Technology) equipment, proudly announces the official launch of its “Build Your Own SMT Line” tool – a first-of-its-kind resource in the electronics manufacturing industry. Introduced just one month ago, this revolutionary online feature gives manufacturers the unprecedented ability to design a complete SMT production line tailored to their exact needs – all from their desktop.
The EEcosystem and Dr. Eric Bogatin Launch Free Masterclass for Electronics Engineers
05/01/2025 | The EEcosystemThe EEcosystem, a podcast media and education brand serving professional electronics engineers, is proud to announce the launch of a new online learning platform: The EEcosystem Electronics Masterclass. The platform debuts with Transmission Lines 101, a free course created in partnership with world-renowned signal integrity expert Dr. Eric Bogatin. The course will be available starting May 1, 2025.
Mycronic Posts Interim Report January-March 2025
04/25/2025 | MycronicMycronic announced its interim report for the period of January to March 2025, revealing a strong performance in the first quarter. The company reported significant increases in order intake and net sales, alongside a healthy EBIT margin.