Reducing the Data Demands of Smart Machines
July 17, 2018 | DARPAEstimated reading time: 2 minutes

Machine learning (ML) systems today learn by example, ingesting tons of data that has been individually labeled by human analysts to generate a desired output. As these systems have progressed, deep neural networks (DNN) have emerged as the state of the art in ML models.
Image Caption: Machine learning systems today learn by example, ingesting tons of data that has been individually labeled by human analysts to generate a desired output. The goal of the LwLL program is to make the process of training machine learning models more efficient by reducing the amount of labeled data required to build a model by six or more orders of magnitude, and by reducing the amount of data needed to adapt models to new environments to tens to hundreds of labeled examples.
DNN are capable of powering tasks like machine translation and speech or object recognition with a much higher degree of accuracy. However, training DNN requires massive amounts of labeled data–typically 109 or 1010 training examples. The process of amassing and labeling this mountain of information is costly and time consuming.
Beyond the challenges of amassing labeled data, most ML models are brittle and prone to breaking when there are small changes in their operating environment. If changes occur in a room’s acoustics or a microphone’s sensors, for example, a speech recognition or speaker identification system may need to be retrained on an entirely new data set. Adapting or modifying a model can take almost as much time and energy as creating one from scratch.
To reduce the upfront cost and time associated with training and adapting an ML model, DARPA is launching a new program called Learning with Less Labels (LwLL). Through LwLL, DARPA will research new learning algorithms that require greatly reduced amounts of information to train or update.
“Under LwLL, we are seeking to reduce the amount of data required to build a model from scratch by a million-fold, and reduce the amount of data needed to adapt a model from millions to hundreds of labeled examples,” said Wade Shen, a DARPA program manager in the Information Innovation Office (I2O) who is leading the LwLL program. “This is to say, what takes one million images to train a system today, would require just one image in the future, or requiring roughly 100 labeled examples to adapt a system instead of the millions needed today.”
To accomplish its aim, LwLL researchers will explore two technical areas. The first focuses on building learning algorithms that efficiently learn and adapt. Researchers will research and develop algorithms that are capable of reducing the required number of labeled examples by the established program metrics without sacrificing system performance. “We are encouraging researchers to create novel methods in the areas of meta-learning, transfer learning, active learning, k-shot learning, and supervised/unsupervised adaptation to solve this challenge,” said Shen.
The second technical area challenges research teams to formally characterize machine learning problems, both in terms of their decision difficulty and the true complexity of the data used to make decisions. “Today, it’s difficult to understand how efficient we can be when building ML systems or what fundamental limits exist around a model’s level of accuracy. Under LwLL, we hope to find the theoretical limits for what is possible in ML and use this theory to push the boundaries of system development and capabilities,” noted Shen.
Suggested Items
AI Chips for the Data Center and Cloud Market Will Exceed US$400 Billion by 2030
05/09/2025 | IDTechExBy 2030, the new report "AI Chips for Data Centers and Cloud 2025-2035: Technologies, Market, Forecasts" from market intelligence firm IDTechEx forecasts that the deployment of AI data centers, commercialization of AI, and the increasing performance requirements from large AI models will perpetuate the already soaring market size of AI chips to over US$400 billion.
NXP Unveils Third-Generation Imaging Radar Processors for Level 2+ to 4 Autonomous Driving
05/09/2025 | NXP SemiconductorNXP Semiconductors N.V. unveiled its new S32R47 imaging radar processors in 16 nm FinFET technology, building on NXP’s proven expertise in the imaging radar space.
OSI Systems Receives $36 Million Contract for Aviation Security Systems
05/08/2025 | BUSINESS WIREOSI Systems, Inc. announced that its Security division received a contract award for approximately $36 million to deploy and service airport screening solutions for a prominent international airport in the Middle East.
Cadence Unveils Millennium M2000 Supercomputer with NVIDIA Blackwell Systems
05/08/2025 | Cadence Design SystemsAt its annual flagship user event, CadenceLIVE Silicon Valley 2025, Cadence announced a major expansion of its Cadence® Millennium™ Enterprise Platform with the introduction of the new Millennium M2000 Supercomputer featuring NVIDIA Blackwell systems, which delivers AI-accelerated simulation at unprecedented speed and scale across engineering and drug design workloads.
Indium’s Karthik Vijay to Present on Dual Alloy Solder Paste Systems at SMTA’s Electronics in Harsh Environments Conference
05/06/2025 | Indium CorporationIndium Corporation Technical Manager, Europe, Africa, and the Middle East Karthik Vijay will deliver a technical presentation on dual alloy solder paste systems at SMTA’s Electronics in Harsh Environments Conference, May 20-22 in Amsterdam, Netherlands.