Researchers Develop Irregular-Shaped Laser to Tackle Laser Instability
August 20, 2018 | NTUEstimated reading time: 3 minutes
An international research team of scientists from Nanyang Technological University, Singapore (NTU Singapore), Yale University and Imperial College London has designed a new way to build high-powered lasers that could result in stable beams, overcoming a long-standing limitation in conventional lasers.
In high-powered lasers, which are used in materials processing, large-scale displays, laser surgery and LiDar (a form of radar that uses lasers), laser instabilities often occur that limit their usage. This instability poses no problems for simple applications such as laser pointers, but becomes a serious issue for lasers operating at high power.
The scientists have developed a unique D-shaped laser that is able to regulate the light emission patterns and eliminate such laser instabilities to potentially reduce the degree of fluctuations in the laser output.
To suppress the instability, the international research team decided to fight fire with fire. NTU Associate Professor Wang Qijie, who was part of the NTU team involved in the international research, explained, “Traditional lasers emit fluctuations in light waves that limit their usefulness. To prevent them from forming, we created an irregular-shaped laser cavity that causes light to bounce off the walls of the cavity in an unpredictable manner that however results in a stable light stream. It’s like using chaos to deal with chaos.”
The research was done on a semiconductor laser that can be found in devices such as barcode scanners and laser printers, but the joint research team believes their findings could be extended to other types of high-powered lasers, including gas lasers and solid-state lasers.
How it Works
Most traditional laser devices take on a cuboid shape, with mirrors placed parallel to each other on both ends to allow light to bounce back and forth between the mirrors.
This seemingly uniform bouncing however leads to laser instability, especially in high-powered lasers, creating irregular peaks and troughs as light is emitted from the laser. These varying peaks could deteriorate the formation of images. (See Annex for a video on laser instability produced by a conventional laser)
Yale professor Hui Cao, the principal investigator who led the international study, said previous strategies to reduce such interference have usually involved reducing the power of the laser. “As a result, none of the previous approaches are scalable to the power levels required for practical applications,” said the Frederick W. Beinecke Professor of Applied Physics at Yale. Professor Ortwin Hess, Co-Director of the Centre for Plasmonics and Metamaterials in Imperial College London, is the other principal investigator of the study.
To tackle this “chaos”, Prof Wang led Zeng Yongquan and Hu Xiaonan, his two PhD students at the time, to build a D-shaped laser cavity. The NTU researchers joined the international research team two years ago.
Inside the D-shaped laser device, light is forced to bounce off mirrors along the irregular shape walls, making it travel in a disorderly manner. However, this seemingly chaotic method results in a stable pattern of light emission. (See Annex for a video of how the new D-shaped laser tackles laser instability)
Further Applications
Assoc Prof Wang said imaging applications such as next generation high-tech microscopes, laser projectors and biomedical imagery are the end goal for the joint research team.
“We have found that a D-shaped laser cavity is easy to fabricate, and is effective in significantly reducing the problematic laser instabilities. Our next step will be to find out if there are other cavity shapes that could make the laser more efficient,” he said.
About Nanyang Technological University, Singapore
A research-intensive public university, Nanyang Technological University, Singapore (NTU Singapore) has 33,000 undergraduate and postgraduate students in the Engineering, Business, Science, Humanities, Arts, & Social Sciences, and Graduate colleges. It also has a medical school, the Lee Kong Chian School of Medicine, set up jointly with Imperial College London.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Smart Eye Collaborates with Sony on Next-Generation Interior Sensing and Iris Authentication
10/09/2025 | Smart EyeSmart Eye AB, the global leader in Interior Sensing AI and Driver Monitoring Systems (DMS), announced a collaboration with Sony Semiconductor Solutions Corporation (Sony) to integrate Smart Eye’s interior sensing and biometric authentication software with Sony’s newly released IMX775 RGB-IR image sensor.
SEMICON Europa 2025 to Highlight Innovations in Advanced Packaging, Fab Management, and MEMS and Imaging Sensors to Bolster Europe’s Semiconductor Resilience
10/03/2025 | SEMISemiconductor industry experts will convene at SEMICON Europa 2025, November 18-21 at Messe München in Munich, to explore the latest trends and innovations in advanced packaging and fab management.
MEMS & Imaging Sensors Summit to Spotlight Sensing Revolution for Europe’s Leadership
09/11/2025 | SEMIIndustry experts will gather November 19-20 at the SEMI MEMS & Imaging Sensors Summit 2025 to explore the latest breakthroughs in AI-driven MEMS and imaging optimization, AR/VR technologies, and advanced sensor solutions for critical defence applications.
Direct Imaging System Market Size to Hit $4.30B by 2032, Driven by Increasing Demand for High-Precision PCB Manufacturing
09/11/2025 | Globe NewswireAccording to the SNS Insider, “The Direct Imaging System Market size was valued at $2.21 Billion in 2024 and is projected to reach $4.30 Billion by 2032, growing at a CAGR of 8.68% during 2025-2032.”
I-Connect007’s Editor’s Choice: Five Must-Reads for the Week
07/04/2025 | Marcy LaRont, I-Connect007For our industry, we have seen several bullish market announcements over the past few weeks, including one this week by IDC on the massive growth in the global server market. We’re also closely watching global trade and nearshoring. One good example of successful nearshoring is Rehm Thermal Systems, which celebrates its 10th anniversary in Mexico and the official opening of its new building in Guadalajara.