Quantum Simulators with Bosons
August 24, 2018 | ICFOEstimated reading time: 1 minute

An ICFO study published in Physical Review Letters proposes an in-depth study on boson interactions in quantum systems Understanding and modelling the behaviour of quantum many-body systems tends to be a very complicated task, to such extent that it cannot be done efficiently with classical computers. Quantum simulators are ideal for these scenarios, since they are very versatile platforms that allow mimicking complex quantum systems in a controllable environment.
Image Caption: Experimental setup proposed to implement the model Hamiltonian. A dynamical lattice is simulated using a set of two-level atoms (orange) deeply confined in an optical lattice.
In such quantum systems, the interplay between electrons and phonons has been extensively studied, leading to the description of many important effects, including superconductivity, polaron formation and charge density waves. However, the same problem for bosons has not been extensively addressed.
The study of boson-lattice problems becomes very relevant in the context of quantum simulators. Ultra-cold atoms in optical lattices, in particular, allow one to experimentally address systems of strongly correlated bosons and to study their properties, which provides an interesting platform to study novel phenomena, such as super-solid phases or topological order.
In a paper recently published in Physical Review Letters, ICFO researchers Daniel González-Cuadra, Przemysław R. Grzybowski and Alexandre Dauphin led by ICREA Prof. at ICFO Maciej Lewenstein propose and analyze a one-dimensional model of interacting bosons coupled to a dynamical lattice. In particular, they report on the generation of an exotic quantum phase that can be realized with state-of-the-art experimental techniques using ultra-cold atoms in optical lattices: the bosonic Peierls insulator.
Using a model of interacting bosons coupled to a dynamical lattice represented by a set of two-level systems, the researchers showed that similar physics to the fermionic counterpart appear for sufficiently strong boson interactions. They showed, in particular, how the underlying lattice reorganize in different patterns depending on the bosonic density, giving rise to various bosonic Peierls insulators with different topological properties.
The proposed model provides, therefore, a unique playground to study the interplay between strong boson interactions, lattice dynamics, spontaneous symmetry breaking and topological effects in a cold atom setup.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
VIDEOTON EAS's Bulgarian Subsidiary Expands Into Automotive Products
09/15/2025 | VideotonVEAS Bulgaria, engaged in electronics manufacturing, has joined the ranks of VIDEOTON companies authorized to produce automotive products.
Variosystems Strengthens North American Presence with Southlake Relaunch 2025
09/15/2025 | VariosystemsVariosystems celebrated the relaunch of its U.S. facility in Southlake, Texas. After months of redesign and reorganization, the opening marked more than just the return to a modernized production site—it was a moment to reconnect with our teams, partners, and the local community.
Hanwha Aerospace to Collaborate with BAE Systems on Advanced Anti-jamming GPS for Guided Missiles
09/15/2025 | HanwhaHanwha Aerospace has signed a contract with BAE Systems to integrate next-generation, anti-jamming Global Positioning System (GPS) technology into Hanwha Aerospace’s Deep Strike Capability precision-guided weapon system.
EV Group Achieves Breakthrough in Hybrid Bonding Overlay Control for Chiplet Integration
09/12/2025 | EV GroupEV Group (EVG), a leading provider of innovative process solutions and expertise serving leading-edge and future semiconductor designs and chip integration schemes, today unveiled the EVG®40 D2W—the first dedicated die-to-wafer overlay metrology platform to deliver 100 percent die overlay measurement on 300-mm wafers at high precision and speeds needed for production environments. With up to 15X higher throughput than EVG’s industry benchmark EVG®40 NT2 system designed for hybrid wafer bonding metrology, the new EVG40 D2W enables chipmakers to verify die placement accuracy and take rapid corrective action, improving process control and yield in high-volume manufacturing (HVM).
United Electronics Corporation Unveils Revolutionary CIMS Galaxy 30 Automated Optical Inspection System
09/11/2025 | United Electronics CorporationUnited Electronics Corporation (UEC) today announced the launch of its new groundbreaking CIMS Galaxy 30 Automated Optical Inspection (AOI) machine, setting a new industry standard for precision electronics manufacturing quality control. The Galaxy 30, developed and manufactured by CIMS, represents a significant leap forward in inspection technology, delivering exceptional speed improvements and introducing cutting-edge artificial intelligence capabilities.