-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueThe Hole Truth: Via Integrity in an HDI World
From the drilled hole to registration across multiple sequential lamination cycles, to the quality of your copper plating, via reliability in an HDI world is becoming an ever-greater challenge. This month we look at “The Hole Truth,” from creating the “perfect” via to how you can assure via quality and reliability, the first time, every time.
In Pursuit of Perfection: Defect Reduction
For bare PCB board fabrication, defect reduction is a critical aspect of a company's bottom line profitability. In this issue, we examine how imaging, etching, and plating processes can provide information and insight into reducing defects and increasing yields.
Voices of the Industry
We take the pulse of the PCB industry by sharing insights from leading fabricators and suppliers in this month's issue. We've gathered their thoughts on the new U.S. administration, spending, the war in Ukraine, and their most pressing needs. It’s an eye-opening and enlightening look behind the curtain.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
PCB Design, Fabrication and Use from the Mil-Aero End-User Perspective
August 28, 2018 | Pete Starkey, I-Connect007Estimated reading time: 13 minutes
MBDA had special clearance rules for selective soldering, with local spot masking an alternative if these clearances could not be maintained.
On the subject of microvia design, the defining standard was IPC-2221. MBDA’s maximum aspect ratio was 1:1, with minimum drill diameter 0.13 mm and pad diameter 0.35 mm. Staggered microvias were preferred; stacked microvias were only permitted in special circumstances. Copper filling was mandatory for surface microvias used for via-in-pad designs.
Cawthorne talked in detail about the benefits of via protection, with reference to IPC-4761 regarding the covering or filling of via holes with organic material, and described the characteristics of tenting, partial plugging and complete plugging methods. With all of these, coplanarity remained an issue, and planarisation was necessary as an aid to assembly. MBDA’s approach was to plug and copper-cap all plated-through vias, although it was preferred to use microvias for outer-layer conductors.
On controlled impedance, the defining standard was IPC-2221 Section 6.4, and although IPC-2221 gave equations for impedance calculation, MBDA worked closely with their PCB fabricators who had access to advanced simulation tools, to determine the effects of material properties and pressed dielectric thicknesses and adjust dimensions accordingly.
Ian Fox commented on the close parallel between the requirements of Rolls Royce and MBDA with regard to material specifications and design-rule conventions, and particularly concurred on the benefits of carefully selecting PCB fabricators and building close working relationships with them, as he introduced Part 2 of the webinar programme and reviewed the attributes of a range of surface finishes, going on to discuss testing and qualification of printed circuit boards and incoming inspection procedures.
Electroplated and fused tin-lead was the traditional PCB finish of the military and space communities and remained the preferred finish of the European Space Agency. As Fox said, “Nothing solders like solder!” Hot air solder leveling was still used as a method of selectively applying tin-lead and lead-free solder finishes, but there were issues with non-uniformity of thickness and non-flat surface profiles that made it unsuitable for fine-pitch surface mount assembly.
Electroless nickel immersion gold (ENIG) was probably the most common surface finish in current use. The defining standard was IPC-4552, which specified a nickel thickness of 3-6 microns and a minimum gold thickness of 0.05 micron. No maximum thickness was stated but a typical process maximum was 0.15 micron.
Fox pointed out that the electroless nickel deposit was not pure metal but contained between 8─11% phosphorus as a by-product of sodium hypophosphite used as a reducing agent in the chemical formulation. The copper surface required to be sensitised, typically with palladium, to initiate the nickel-phosphorus deposition. The thin layer of gold prevented oxidation of the nickel surface and rendered it solderable.
Immersion gold was deposited by a galvanic displacement process which effectively involved a controlled corrosion of the nickel surface and tended to be self-limiting in thickness. The immersion gold chemistry was highly acidic and if the process was not properly controlled could cause a hyper-corrosion effect resulting in “black pad” defects.
ENIG offered the advantages of a flat solderable surface to aid fine-pitch surface-mount assembly and could be aluminium wire-bonded. Additionally, electroless nickel had been observed to increase the fatigue life of plated holes.
Electroless nickel electroless palladium immersion gold (ENEPIG), as defined by IPC-4556, offered improvements over ENIG. A layer of approximately 0.5 micron of palladium between the nickel and the gold eliminated black pad effects and rendered the finish wire-bondable with gold or aluminum.
Of the other finishes available, immersion silver—effectively an organo-metallic coating deposited directly on copper—had been associated with creep corrosion and silver migration under certain conditions; immersion tin was good for press-fit but had limited shelf life and was not suitable for multiple reflow operations; neither were the organic solderability protective finishes. So these alternative finishes tended not to be preferred options in hi-rel mil-aero applications.
Moving on from finishes to the final stages of the bare-board fabrication process, Fox described how each PCB was validated before delivery by non-functional electrical test in accordance with IPC-9252, to verify continuity, isolation and track resistance, using a test program generated by the fabricator using a net list derived from the supplied digital manufacturing data.
Rolls Royce specified a minimum test voltage of 40 volts, although 250 volts was preferred, and if testing was carried out below 250V then it was necessary to carry out an additional 250V “proof of design” test. They required a minimum of 10 megaohms isolation between unconnected circuit elements, and a maximum trace resistance of 5 ohms, except in the case of unusually long nets, where trace resistance should not be greater than 0.5 ohms per 25 mm. Adjacency settings for flying probe test equipment were specified as 1 mm on internal features and 2 mm on externals. And if heat sinks were fitted, a minimum insulation resistance of 10 megaohms at 500 volts to unconnected circuitry was required.
How did Rolls Royce qualify a PCB design in terms of structure and fabrication, assembly and reliability, and how and at what stage was the design sealed? These were the areas Fox focused on next.
Page 2 of 3
Suggested Items
KYZEN to Highlight Understencil and PCB Cleaners at SMTA Querétaro Expo and Tech Forum
07/09/2025 | KYZEN'KYZEN, the global leader in innovative environmentally responsible cleaning chemistries, will exhibit at the SMTA Querétaro Expo & Tech Forum, scheduled to take place Thursday, July 24, at Centro de Congresos y Teatro Metropolitano de Querétaro.
Driving Innovation: Direct Imaging vs. Conventional Exposure
07/01/2025 | Simon Khesin -- Column: Driving InnovationMy first camera used Kodak film. I even experimented with developing photos in the bathroom, though I usually dropped the film off at a Kodak center and received the prints two weeks later, only to discover that some images were out of focus or poorly framed. Today, every smartphone contains a high-quality camera capable of producing stunning images instantly.
Hands-On Demos Now Available for Apollo Seiko’s EF and AF Selective Soldering Lines
06/30/2025 | Apollo SeikoApollo Seiko, a leading innovator in soldering technology, is excited to spotlight its expanded lineup of EF and AF Series Selective Soldering Systems, now available for live demonstrations in its newly dedicated demo room.
Indium Corporation Expert to Present on Automotive and Industrial Solder Bonding Solutions at Global Electronics Association Workshop
06/26/2025 | IndiumIndium Corporation Principal Engineer, Advanced Materials, Andy Mackie, Ph.D., MSc, will deliver a technical presentation on innovative solder bonding solutions for automotive and industrial applications at the Global Electronics A
Fresh PCB Concepts: Assembly Challenges with Micro Components and Standard Solder Mask Practices
06/26/2025 | Team NCAB -- Column: Fresh PCB ConceptsMicro components have redefined what is possible in PCB design. With package sizes like 01005 and 0201 becoming more common in high-density layouts, designers are now expected to pack more performance into smaller spaces than ever before. While these advancements support miniaturization and functionality, they introduce new assembly challenges, particularly with traditional solder mask and legend application processes.