Biosensor for Phenylketonuria
September 14, 2018 | MAX-PLANCK-GESELLSCHAFTEstimated reading time: 2 minutes

The treatment of numerous diseases could be improved if the blood concentration of disease-relevant metabolites could be monitored at the point-of-care (POC), ideally even by the patient. A team of scientists led by researchers at the Max Planck Institute for Medical Research in Heidelberg and the École Polytechnique Fédérale de Lausanne has now introduced a biosensor for the accurate quantification of metabolites in small blood samples obtained from a simple finger prick. This biosensor could become an important tool for the diagnosis and management of various diseases.
Diseases or injuries can result in dramatic changes in metabolite blood levels. For example, increased blood levels of the amino acid phenylalanine are characteristic of the genetic disorder phenylketonuria. Infants suffering from this disease need to control phenylalanine levels through dietary management to avoid irreversible brain damage. It is therefore essential to have some means of regularly monitoring phenylalanine levels in blood.
However, such monitoring currently requires blood samples to be sent to clinical laboratories with results taking several days to come back to the patient. This time-delay often complicates disease management for both phenylketonuria patients and their physicians. A team of scientists led by Kai Johnsson of the Max Planck Institute for Medical Research in Heidelberg has now introduced a simple paper-based assay that can measure concentrations of metabolites such as phenylalanine in small blood samples within minutes. The approach was validated with patient samples obtained from the Heidelberg and Lausanne University Hospitals. The work represents an important advance towards POC-monitoring of metabolites in blood.
Molecular Engineering
“We introduce a fundamentally new mechanism to measure metabolites for blood analysis,” says Qiuliyang Yu, first author of the paper and scientist at the Department of Chemical Biology at the Max Planck Institute in Heidelberg. “Instead of miniaturizing available technologies for POC applications, we developed a new molecular tool,” he explains further. The tool is a light-emitting, engineered protein that changes its color in the presence of the reduced cofactor nicotinamide adenine dinucleotide, known to biochemists under its acronym NADPH. As NADPH is produced in an enzyme-catalyzed reaction specific for the metabolite of interest, analyzing the color of the emitted light reveals the metabolite concentration. Using different enzyme-catalyzed reactions, the same sensor can be used to establish quantitative POC assays for various metabolites, as shown for phenylalanine, glutamate and glucose.
How to use it?
In the case of phenylalanine, a droplet of blood is first taken from the patient through a painless finger pick. In a second step, a fraction of the blood sample is added to a reaction buffer and applied onto a paper containing the immobilized biosensor. When phenylalanine is consumed and NADPH is produced, the light emitted by the sensor changes its color from blue to red, which can be detected by a simple digital camera or a smartphone. The ratio of blue to red light is then used to calculate the concentration of phenylalanine. The whole procedure takes only ten to 15 minutes, can be done at the POC and yields accurate results when compared to standard methods used in clinical laboratories.
The accuracy and simplicity of the procedure should eventually enable patient self-testing, a goal that is pursued at the Max Planck Institute for Medical Research. “We are now looking for ways to further automatize and simplify the test” says Yu, who is excited about the idea of putting a much needed tool in the hands of patients suffering from phenylketonuria or other diseases that require the monitoring of metabolite concentrations.
Suggested Items
Weak Consumer Market Dampens Enterprise SSD Price Growth, 4Q24 Supplier Revenue Declines 0.5%
03/07/2025 | TrendForceTrendForce’s latest research shows that 4Q24 enterprise SSD demand remained stable compared to the previous quarter, driven by the arrival of NVIDIA H-series products and continued procurement from large CSPs in China.
Dan Beeker on the Design Engineer of the Future
02/07/2025 | Andy Shaughnessy, Design007 MagazineAs technical director at NXP Semiconductors, Dan Beeker specializes in EMC and signal integrity design techniques. He’s known for his field-based design classes; you may remember the cover of Meghan Trainor’s “All About That Bass” that Dan and his daughter Breezy released in 2015 titled “All About The Space.” Check it out on YouTube; it’s funny, and it definitely gets the point across. As we begin 2025, I contacted Dan to get his thoughts about the design engineers of the future. What will their jobs look like?
Solderstar to Present Advanced Profiling Solutions at IPC APEX EXPO 2025
02/04/2025 | SolderStarSolderstar, a leading provider of profiling solutions for the electronics manufacturing industry, will exhibit at IPC APEX EXPO 2025, which will take place March 18-20, 2025, at the Anaheim Convention Center in California.
Cutting-Edge Satellite Tracks Lake Water Levels in Ohio River Basin
12/30/2024 | NASAData from the U.S.-European Surface Water and Ocean Topography mission gives researchers a detailed look at lakes and reservoirs in a U.S. watershed.
Kimball Electronics 2024 Annual Report: Strategically Focused
10/03/2024 | Kimball ElectronicsKimball Electronics releases its 2024 Annual Report, Strategically Focused, highlighting a year of innovation, hard work and commitment to excellence. From groundbreaking projects to sustainable practices, our journey this year has been nothing short of remarkable.