A Wearable Device for Regrowing Hair
September 14, 2018 | ACSEstimated reading time: 1 minute

Although some people embrace the saying “bald is beautiful,” for others, alopecia, or excessive hair loss, can cause stress and anxiety. Some studies have shown that stimulating the skin with lasers can help regrow hair, but the equipment is often large, consumes lots of energy and is difficult to use in daily life. Now, researchers have developed a flexible, wearable photostimulator that speeds up hair growth in mice. They report their results in ACS Nano.
Affecting millions of men and women worldwide, alopecia has several known causes, including heredity, stress, aging and elevated male hormones. Common treatments include medications, such as minoxidil, corticosteroid injections and hair transplant surgery. In addition, irradiating the bald area with a red laser can stimulate hair follicles, causing cells to proliferate. However, this treatment is often impractical for home use. So, Keon Jae Lee and colleagues wanted to develop a flexible, durable photostimulator that could be worn on human skin.
The team fabricated an ultrathin array of flexible vertical micro-light-emitting diodes (mLEDs). The array consisted of 900 red mLEDs on a chip slightly smaller than a postage stamp and only 20 mm thick. The device used almost 1,000 times less power per unit area than a conventional phototherapeutic laser, and it did not heat up enough to cause thermal damage to human skin. The array was sturdy and flexible, enduring up to 10,000 cycles of bending and unbending. The researchers tested the device’s ability to regrow hair on mice with shaved backs. Compared with untreated mice or those receiving minoxidil injections, the mice treated with the mLED patch for 15 minutes a day for 20 days showed significantly faster hair growth, a wider regrowth area and longer hairs.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Printed Electronics Market Size to Top $83.77 Billion by 2034 Driven by IoT Adoption and Flexible Device Demand
09/11/2025 | Globe NewswireThe printed electronics market size has been calculated at U$19,920 million in 2025 and is expected to grow from $23,58 million in 2026 to approximately $83,770 million by 2034.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Global Flexible PCB Output Expected to Surpass $20 Billion by 2025, with AI Glasses Emerging as a New Growth Driver
08/25/2025 | TPCAThe Taiwan Printed Circuit Association (TPCA) and the Industrial Technology Research Institute (ITRI) released the "2025 Global Flexible PCB Industry Outlook" in August.
Nano Silver Inks Market Forecast Report 2025-2030
08/20/2025 | Globe NewswireThe Nano Silver Inks Market is expected to grow from USD 427.415 million in 2025 to USD 836.160 million in 2030, at a CAGR of 14.36%.
Flexible Circuit Technologies to Host Free Flex Heater Webinar
08/18/2025 | Flexible Circuit TechnologiesGlobal Supplier of flexible circuits, flex design services, and assembly/box-build services, Flexible Circuit Technology will host their latest webinar, "Thermal Precision Meets Flexibility: The Technology Behind Heater Circuits" on Tuesday, August 26th, 2025 at 11 AM EDT.