A Wearable Device for Regrowing Hair
September 14, 2018 | ACSEstimated reading time: 1 minute

Although some people embrace the saying “bald is beautiful,” for others, alopecia, or excessive hair loss, can cause stress and anxiety. Some studies have shown that stimulating the skin with lasers can help regrow hair, but the equipment is often large, consumes lots of energy and is difficult to use in daily life. Now, researchers have developed a flexible, wearable photostimulator that speeds up hair growth in mice. They report their results in ACS Nano.
Affecting millions of men and women worldwide, alopecia has several known causes, including heredity, stress, aging and elevated male hormones. Common treatments include medications, such as minoxidil, corticosteroid injections and hair transplant surgery. In addition, irradiating the bald area with a red laser can stimulate hair follicles, causing cells to proliferate. However, this treatment is often impractical for home use. So, Keon Jae Lee and colleagues wanted to develop a flexible, durable photostimulator that could be worn on human skin.
The team fabricated an ultrathin array of flexible vertical micro-light-emitting diodes (mLEDs). The array consisted of 900 red mLEDs on a chip slightly smaller than a postage stamp and only 20 mm thick. The device used almost 1,000 times less power per unit area than a conventional phototherapeutic laser, and it did not heat up enough to cause thermal damage to human skin. The array was sturdy and flexible, enduring up to 10,000 cycles of bending and unbending. The researchers tested the device’s ability to regrow hair on mice with shaved backs. Compared with untreated mice or those receiving minoxidil injections, the mice treated with the mLED patch for 15 minutes a day for 20 days showed significantly faster hair growth, a wider regrowth area and longer hairs.
Suggested Items
Symposium Review: Qnity, DuPont, and Insulectro Forge Ahead with Advanced Materials
07/02/2025 | Barb Hockaday, I-Connect007In a dynamic and informative Innovation Symposium hosted live and on Zoom on June 25, 2025, representatives from Qnity (formerly DuPont Electronics), DuPont, and Insulectro discussed the evolving landscape of flexible circuit materials. From strategic corporate changes to cutting-edge polymer films, the session offered deep insight into design challenges, reliability, and next-gen solutions shaping the electronics industry.
Flexible Electronics Market to Reach $66.9 Billion by 2032, Growing at a CAGR of 9.2% from 2025
06/30/2025 | PRNewswireThe flexible electronics market is projected to reach $66.9 billion by 2032, up from an estimated $38.4 billion in 2025, growing at a robust CAGR of 9.2% during the forecast period.
All Flex Solutions Upgrades Lamination Layup
06/22/2025 | All Flex SolutionsAll Flex Solutions has invested in Ulrich Rotte lamination layup stations in their rigid flex layup area. The Ulrich Rotte stations automate the layup process by handling the lamination plates, which are heavy, and sequencing the layup process for the operators.
SEMI FlexTech Solicits Proposals for Advancing the Future of Flexible Hybrid Electronics
06/18/2025 | SEMIFlexTech, a SEMI Technology Community, today issued a Request for Proposals (RFP) to advance flexible hybrid electronics (FHE) technologies, including the development of advanced materials and additive processing.
Roll-to-Roll Technologies for Flexible Devices Set to Grow at 11.5% CAGR
06/11/2025 | GlobeNewswireAccording to the latest study from BCC Research, the “Global Markets for Roll-to-Roll Technologies for Flexible Devices” is expected to reach $69.8 billion by the end of 2029 at a compound annual growth rate (CAGR) of 11.5% from 2024 to 2029.