Quantum Behavior of Magnetic Excitations Revealed in Antiferromagnet
September 17, 2018 | RIKENEstimated reading time: 2 minutes
The unusual magnetic properties of an antiferromagnetic material, studied by RIKEN scientists, could guide the development of components for quantum computers and precision measurement devices.
Figure 1: The chemical structure of the antiferromagnetic material barium cobalt antimonite.
Many magnetic properties depend on the orientation of the electron spins in a material, since they possess intrinsic magnetic moments rather like miniature bar magnets. For example, everyday permanent magnets produce a magnetic field because most of their electronic spins (and hence their magnetic moments) are aligned in the same direction. In contrast, neighboring magnetic moments of antiferromagnetic materials tend to point in opposite directions, so that the material has no overall magnetization. However, the application of an external magnetic field can flip some of the electronic magnetic moments and magnetize the material.
In a collaborative study involving researchers from China and the USA, Yoshitomo Kamiya of RIKEN’s Chief Scientist Laboratories and his colleagues have now used a mixture of theory and experiment to probe the magnetic properties of an antiferromagnetic material called barium cobalt antimonate.
Increasing the material’s magnetization created a spin pattern with magnetic excitations known as magnons. Their behavior can be described in two ways: one based on quantum theory and the other with its roots in classical physics. The quantum approach treats magnons as emergent particles, whereas the classical one regards them as waves.
“In spin wave theory, magnons are wave-like excitations, similar to sound waves propagating in a rigid medium,” says Kamiya.
Previous experiments had found that magnons behaved in odd ways in this material in the absence of an external magnetic field. “Our goal was to narrow down the origin of this anomalous behavior,” says Kamiya.
The researchers studied magnons in barium cobalt antimonate at a third of its maximum possible magnetization, under a strong external field. They used neutron-scattering measurements to map the magnons’ behavior, and found that the magnons were well described by the semiclassical spin wave theory.
In the absence of an external magnetic field, however, magnons in the material are more likely to decay into ‘fractionalized particles’ called spinons, whose properties depend on quantum theory and which do not have a classical counterpart in spin wave theory. Fractionalized particles are so called because they carry a fraction of the magnetization unit.
“Our work is providing clear guiding principles for finding fractionalized excitations in real materials,” says Kamiya. “These excitations have the potential to replace classical technologies with quantum ones, which are rooted in the intrinsically quantum mechanical behavior of electrons in solids.”
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Sealed for Survival: Potting Electronics for the Toughest Environments
10/29/2025 | Beth Massey, MacDermid Alpha Electronics SolutionsElectronics deployed in harsh conditions face relentless threats from vibration, impact, chemical contaminants, airborne pollutants, and moisture, conditions that can quickly lead to failure without robust protection. Potting, the process of encapsulating electronics in a protective polymer, is a widely used strategy to safeguard devices from both environmental and mechanical hazards.
Driving Innovation: Mechanical and Optical Processes During Rigid-flex Production
10/28/2025 | Kurt Palmer -- Column: Driving InnovationRigid-flex printed circuit boards are a highly effective solution for placing complex circuitry in tight, three-dimensional spaces. They are now indispensable across a range of industries, from medical devices and aerospace to advanced consumer electronics, helping designers make the most efficient use of available space. However, their unique construction—combining rigid and flexible materials—presents a fundamental challenge for PCB manufacturers.
SMTAI 2025 Review: Reflecting on a Pragmatic and Forward-looking Industry
10/27/2025 | Marcy LaRont, I-Connect007Leaving the show floor on the final afternoon of SMTA International last week in Rosemont, Illinois, it was clear that the show remains a grounded, technically driven event that delivers a solid program, good networking, and an easy space to commune with industry colleagues and meet with customers.
ITW EAE Despatch Ovens Now Support ASTM 5423 Testing
10/15/2025 | ITW EAEAs the demand for high-performance electrical insulation materials continues to grow—driven by the rapid expansion of electric vehicles (EVs) and energy storage systems—thermal processing has become a critical step in material development.
Beyond Thermal Conductivity: Exploring Polymer-based TIM Strategies for High-power-density Electronics
10/13/2025 | Padmanabha Shakthivelu and Nico Bruijnis, MacDermid Alpha Electronics SolutionsAs power density and thermal loads continue to increase, effective thermal management becomes increasingly important. Rapid and efficient heat transfer from power semiconductor chip packages is essential for achieving optimal performance and ensuring long-term reliability of temperature-sensitive components. This is particularly crucial in power systems that support advanced applications such as green energy generation, electric vehicles, aerospace, and defense, along with high-speed computing for data centers and artificial intelligence (AI).