Sound Offers New Directions in Integrated Photonics
September 18, 2018 | Yale UniversityEstimated reading time: 2 minutes
Yale scientists have demonstrated a new method to control the behavior of light on a silicon chip — specifically, its direction — by using sound waves.
For decades, researchers have tried to adapt widely used optical technologies — including lasers, transmitters, and receivers — to microchip-based devices. “The field of integrated photonics offers potential breakthroughs for applications ranging from energy-efficient communications to precision sensing and quantum information,” explained Peter Rakich, an associate professor of applied physics at Yale, who led the research team. “It’s very exciting because we’re already seeing these technologies used in practical commercial systems.”
A major challenge is the lack of chip-scale technologies that can produce so-called non-reciprocal operations. These include isolators, which are “diodes” for light that permit transmission in only one direction, and circulators, which separate forward- and backward-moving light waves into separate channels. Eric Kittlaus, the study’s first author, said, “These kinds of devices are technologically important because they allow us to control and route light on a chip. For example, if we have an on-chip laser and some of its emitted light gets reflected back inside, this can severely impact the device’s performance. Using an isolator, we can make sure that light is only allowed to exit our laser.”
In most materials, light behaves the same whether it is traveling forward or backward. Existing approaches to produce commercial benchtop optical isolators typically involve synthetic garnet crystals interfaced with permanent magnets. However, when building on-chip devices, neither exotic crystals nor magnetic fields are readily available.
As a result, alternate proposals have sought to use electrical or acoustic control of chip-based optical circuits to demonstrate non-reciprocal light propagation. Thus far, these promising approaches have been hindered by problems such as excess loss of light signal or working only for light that is a single color.
By coupling light and sound on a silicon chip, Rakich’s team demonstrated that traveling ultrasound waves can produce non-reciprocal propagation for light over wavelength ranges 100 times greater than previously observed, and with practically no excess loss of the light signal. The same system has another benefit: The sound waves themselves were created using light, allowing the researchers to control the shape and direction of the ultrasound emission at will. This extra “knob” allows the same device to operate on light signals of practically any color, according to the researchers.
“Beyond the practical uses, it’s an example of very interesting and non-intuitive physics — seeing these different parts come together is very elegant,” Kittlaus said.
“We’re thrilled by the scientific and technological implications of this work. Not only does this structure allow us to explore new physical phenomena, but it also represents a significant milestone towards the realization of practical chip-scale isolator and circulator technologies, one of the most significant remaining challenges facing integrated photonics,” says Nils Otterstrom, one of the paper’s co-authors.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
TTM Technologies Reports Q3 2025 Results
10/30/2025 | Globe NewswireTTM Technologies, Inc., a leading global manufacturer of technology products, including mission systems, radio frequency (RF) components, RF microwave/microelectronic assemblies, and technologically advanced printed circuit boards (PCBs) reported results for the third quarter 2025, which ended on September 29, 2025.
Ynvisible Expands into South America Through Strategic Collaboration with ED Technologies
10/22/2025 | Ynvisible Interactive Inc.Ynvisible Interactive Inc., a leading provider of printed low-power e-paper display products, is pleased to announce a strategic partnership with ED Technologies to support market development across South America, with an initial focus on Brazil.
Würth Elektronik Participates in EU Initiative PROACTIF for Cutting-edge Drone and Robotics Solutions
10/14/2025 | Wurth ElektronikWürth Elektronik is a partner in the visionary EU project PROACTIF, funded under the Chips Joint Undertaking (Chips JU). The international consortium of 42 partners from 13 countries aims to strengthen Europe’s technological sovereignty i
Dymax to Address Key Electronics Assembly Challenges with Light-Cure Solutions at SMTA International 2025
10/09/2025 | DymaxDymax, a global manufacturer of light-curing materials and equipment, will exhibit at SMTA International 2025 in Rosemont, Illinois, October 21–23. Visit booth 2834 to see how Dymax technologies protect components from harsh environments, help meet regulatory requirements, and streamline assembly.
The Latest Issue: Advanced Electronics Packaging Digest to Explore Critical Minerals, Substrates, and Reliability Standards Driving Next-Gen Electronics
10/09/2025 | I-Connect007I-Connect007 is pleased to announce the upcoming issue of Advanced Electronics Packaging Digest (AEPD) on October 13, 2025, featuring expert insights on the technologies shaping the future of advanced packaging. As the electronics industry evolves, this issue takes a closer look at the materials, designs, and standards redefining performance and reliability across global markets.